Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T07:59:14.799Z Has data issue: false hasContentIssue false

Ferriferous and vanadiferous kaolinites from the hydrothermal alteration halo of the Cigar Lake uranium deposit (Canada)

Published online by Cambridge University Press:  09 July 2018

C. Mosser
Affiliation:
Centre de Géochimie de la Surface, UPR 6251 C.N.R.S., 1 rue Blessig, 67084 Strasbourg Cedex, France
M. Boudeulle
Affiliation:
Université Claude Bernard Lyon I, Laboratoire de Physicochimie des Matériaux Luminescents, URA 442 C.N.R.S., 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
F. Weber
Affiliation:
Centre de Géochimie de la Surface, UPR 6251 C.N.R.S., 1 rue Blessig, 67084 Strasbourg Cedex, France
A. Pacquet
Affiliation:
Groupe des Sciences de la Terre, COGEMA, Route de Saint Pardoux, 87640 Razès, France

Abstract

The uranium deposit (1350 Ma) of Cigar Lake (Canada) is surrounded by a late hydrothermal alteration halo (330 Ma) containing Fe-illites and kaolinites. Crystallochemical characterization of the kaolinites has been carried on the microscale using XRD, electron microscopy (SEM and TEM) coupled with EDX spectrometry and EPR. The large, well-crystallized particles show large amounts of Fe (0.9–1.8%) and V (0.3–0.5%). According to EPR measurements performed on both random powders and oriented samples, V occurs as the vanadyl ion VO2+, in substitution within the octahedral sheet of the kaolinite structure in the same way as Fe3+. Kaolinite growth proceeded through the hydrothermal alteration of anterior phyllosilicates devoid of V, induced by fluids which leached V-rich titano-magnetites in the surrounding sandstones.

Resume

Resume

Le gisement d'uranium (1350 Ma) de Cigar Lake (Canada) présente une auréole d'altération hydrothermale (330 Ma) contenant des illites ferrifères et des kaolinites. Nous avons réalisé une étude cristallochimique des kaolinites à l'échelle de la particule en combinant la diffraction des RX, la microscopie électronique (MEB et MET) couplée à la spectrométrie RX en dispersion d'énergie et la résonance paramagnétique électronique (RPE). Les particules, bien formées et de haute cristallinité, montrent un taux élevé de Fe (0.9–1.8%) mais surtout de V (0.3–0.5%). D'après les données RPE, enregistrées sur des poudres et des échantillons orientés, le V apparait sous forme d'ions vanadyle VO2+, en substitution, comme Fe3+ dans la couche octaèdrique de la kaolinite. Le développement des kaolinites résulte de l'altération hydrothermale de phyllosilicates antérieurs, dépourvus de V, par des fluides enrichis en cet élément lors du lessivage de titanomagnétites dans les grès environnants.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R. & Hall, P.L. (1972) Electron spin resonance studies of kaolins. Proc. Int. Clay Conf. Madrid, 47-60.Google Scholar
Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites. Clay Miner. 10, 247255.CrossRefGoogle Scholar
Angel, B.R., Cuttler, A.H., Richards, K.S. & Vincent, E.J. (1977) Synthetic kaolinites doped with Fe2+ and Fe3+ ions. Clays Clay Miner. 25, 381383.Google Scholar
Bruneton, P. (1987) Geology of the Cigar Lake uranium deposit (Saskatchewan, Canada). Economic Minerals of Saskatchewan, Spec. publ. 8, 99119.Google Scholar
Cotton, F.A. & Wilkinson, G. (1986) Basic Inorganic Chemistry. John Wiley & Son, Chichester and New York.Google Scholar
Cuttler, A.H. (1980) The behaviour of a synthetic 57Fe doped kaolin: Mossbauer and electron paramagnetic resonance studies. Clay Miner. 15, 429444.CrossRefGoogle Scholar
Cuttler, A.H. (1981) Further studies of a ferrous iron doped synthetic kaolin : dosimetry of X-ray induced defects. Clay Miner. 16, 6980.Google Scholar
Drits, V.A., Weber, F., Salyn, A.L. & Tsipursky, I. (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays Clay Miner. 41, 389398.Google Scholar
Fouques, J.P., Fonler, M., Knipping, H.D. & Schimann, K. (1986) Le gisement d'uranium de Cigar Lake: découverte et caractéristiques générates. Can. Min. Metall. Bull. 79-886, 7082.Google Scholar
Gaite, J.M., Ermakoff, P. & Muller, J.P. (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite. Phys. Chem. Min. 20, 242247.CrossRefGoogle Scholar
Gehring, A.U., Fry, I.V., Luster, J. & Sposito, G. (1993) The chemical form of vanadium (IV) in kaolinite. Clays Clay Miner. 41, 662667.Google Scholar
Graham, W.R.M. (1987) Analysis of metal species in petroleum and sand using the electron paramagnetic resonance and Fourier transform infrared techniques. ACS Syrup. Ser. 344 (Met. complexes Fossil Fuels), 358-367.Google Scholar
Hall, P.L (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Miner. 15, 321335.Google Scholar
Hall, P.L., Angel, B.R. & Braven, J. (1974) Electron spin resonance and related studies of lignite and ball clay from south Devon, England. Chem. Geol. 13, 97113.Google Scholar
Herbillon, A.J., Mestdagh, M.M., Vielvoye, L. & Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soil. Clay Miner. 11, 201220.Google Scholar
Jain, V.K., Seth, V.P. & Malhorta, R.K. (1984) Electron paramagnetic resonance of vanadyl ion impurities in crystalline solids. J: Phys. Chem. Solids, 45, 529545.Google Scholar
Jones, J.P., Angel, B.R. & Hall, P.L (1974) Electron spin resonance studies of doped synthetic kaolinite. Clay Miner. 10, 257269.Google Scholar
Mcbride, M.B. (1979) Mobility and reactions of VO2+ on hydrated smectite surfaces. Clays Clay Miner. 27, 9196.Google Scholar
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10, 313345.Google Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner. 15, 113.Google Scholar
Mestdagh, M., Herbillon, A., Rodrique, L. & Rouxhet, P. G. (1982) Evaluation du role du fer structural sur la cristallinité des kaolinites. Bull. Minéral. 105, 457466.Google Scholar
Monsef-Mirzai, P. & McWhinnie, W.R. (1982) Spectroscopic studies of metal ions sorbed onto kaolinite, lnorg. Chim. Acta, 58, 142148.Google Scholar
Muller, J.P. & Callas, G. (1989) Genetic significance of paramagnetic centers in kaolinites. Pp. 261–289 in: Kaolin Genesis and Utilization (Murray, H.H., Bundy, W.M. & Harvey, C.C., editors). The Keller 90 Kaolin Symposium, The Clay Minerals Society, Colorado.Google Scholar
Muller, J.P. & Callas, G. (1993) Tracing kaolinites through their defect centers: kaolinite paragenesis in a laterite (Cameroon). Econ. Geol. 84, 694707. Muller, J.P., Clozel, B., Ildefonse, P. & Callas, G. (1992) Radiation-induced defects in kaolinites: indirect assessment of radionuclide migration in the geosphere. Appl. Geochem. Suppl. Issue, 1, 205216.Google Scholar
Muller, J.P., Ildefonse, P. & Callas, G. (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopai uranium deposit, Chihuahua, Mexico. Clays Clay Miner. 38, 600608.Google Scholar
Muller, J.P., Manceau, A., Callas, G., Allard, T., Ildefonse, P. & Hazemann, J.L. (1995) Crystal chemistry of kaolinite an Fe-Mn oxide: relation with formation conditions of low temperature systems. Am. J. Sci. 295, 11151155.Google Scholar
Oltvler, D., Verdrine, J.C. & Pezerat, H. (1975) Application de la résonance paramagnétique électronique à la localisation du Fe3+ dans les smectites. Bull. Groupe fran9. Argiles XXVII, 153-165.Google Scholar
Pacquet, A. & Weber, F. (1993) Pétrographie et minéralogie des halos d'altération autour du gisement de Cigar Lake et leurs relations avec les minéralisations. Can. J. Earth Sci. 30, 674688.Google Scholar
Philippe, S., Lancelot, J.R., Clauer, N. & Pacquet, A. (1993) Formation and evolution of the Cigar Lake uranium deposit based on U-Pb and K-Ar isotope systematics. Rev. Can. Sei. Terre, 30, 720730.Google Scholar
Pinnavaia, T.J., Hall, P.L., Cady, S.S. & Mortland, M.M. (1974) Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. Phys. Chem. 78, 994999.Google Scholar
Samuel, J. & Rouault, R. (1983) Les méthodes d'analyses des matériaux géologiques pratiquées au laboratoire d’ analyses spectrochimiques. Nouvelle 6d. 1990. Notes techniques de l'Institut de Géologie, Université Louis Pasteur Strasbourg, 16, 46 pp.Google Scholar
Symons, M. (1978) Chemical and Biochemical Aspects of Electron-spin Resonance Spectroscopy. Van Nostrand Reinhold Company Publ. Google Scholar