Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T05:48:27.355Z Has data issue: false hasContentIssue false

A far infrared study of K+ ions during K+ ⇋ Ca2+ exchange in vermiculite

Published online by Cambridge University Press:  09 July 2018

R. Badreddine
Affiliation:
Unité de Science du Sol, INRA, Route de Saint Cyr, 78026 Versailles
R. Le Dred
Affiliation:
Laboratoire des Matériaux Minéraux, ENSCM, 3 rue AlfredWerner, 68093 Mulhouse, France
R. Prost*
Affiliation:
Unité de Science du Sol, INRA, Route de Saint Cyr, 78026 Versailles
*

Abstract

K+ ⇋ Ca2+ exchange was performed on a mixed-layer (phlogopite-vermiculite) sample from Palabora, Republic of South Africa. Exchange isotherms, X-ray diffraction patterns and far infrared (FIR) spectra of the mineral were obtained. Different mineralogical phases were identified during the exchange process: K-vermiculite, Ca-vermiculite and a regular mixed-layer (VK–VCa) phase. Two types of exchange sites for K+ were identified by FIR during the exchange process. The first type, dominant in the K-vermiculite, gives an absorption band at 76 cm–1. The other, which was the most pronounced site in the mixed-layer phase, gives an absorption band at 72 cm–1. The mixed-layer phase was formed only when oxidation of Fe2+ resulted in the internal compensation of part of the negative charge of vermiculite. This study shows that the high selectivity displayed by vermiculite for K+ is enhanced by the formation of the mixed-layer phase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badreddine, R. (1998) Caractérisation cristallochimique des vermiculites de Palabora, République d’Afrique du Sud, et des Béni Bousera, Maroc. PhD thesis, Univ. Liège, Belgium.Google Scholar
Badreddine, R., Grandjean, F., Vandormael, D., Fransolet, A.-M. & Long, G.J. (2000) An 57Fe Mössbauer spectral study of vermiculitization in the Palabora Complex, Republic of South Africa. Clay Minerals, 35, 653663.Google Scholar
Badreddine, R., Le Dred, R. & Prost, R. (2002) Far infrared study of K+, Rb+, Cs+ during their exchange with Na+ and Ca2+ in vermiculite. Clay Minerals, 37, 7181.Google Scholar
Baron, J. & Saehr, D. (1983) Contribution à l’étude thermodynamique de l’échange de cations entre une vermiculite et des solutions aqueuses d’ions minéraux et organiques. PhD thesis, Univ. Haute-Alsace, France.Google Scholar
de la Calle, C., Martin De Vidales, J.L. & Pons, C.H. (1993) Stacking order in a K/Mg interstratified vermicul ite from Malawi. Clays and Clay Minerals, 41, 580589.CrossRefGoogle Scholar
Diaz, M. (1999) E´ tude des interactions cations compensateurs/ feuillets dans les argiles: contribution à la connaissance des mécanismes de rétention sé lective. Doc. ès Sci. thesis, Univ. Orléans, France.Google Scholar
Goulding, K.W.T. & Talibu deen, O. (1980) Heterogeneity of cation-exchanges sites for K-Ca. Exchange in aluminosilicates. Journal of Colloid and Interface Science, 78, 1524.CrossRefGoogle Scholar
Hoda, S.N. & Hood, W.C. (1972) Laboratory alteration of trioctahedral micas. Clays and Clay Minerals, 20, 343358.Google Scholar
Le Dred, R. & Wey, R. (1978) Formation et applications de complexes mica-vermiculite-chlorure de sodium. Clay Minerals Bulletin, 13, 177186.CrossRefGoogle Scholar
Le Dred, R., Saehr, D. & Wey, R. (1984) Différenciation des espaces interfoliaires d’une vermiculite par l ‘é change d’ ions 2K+ ⇌ Ca2+ . Sciences Géologiques Bulletin, 37, 297306.Google Scholar
Maes, E., Vielvoye, L., Stone, W. & Delvaux, B. (1999) Fixation of radiocaesium traces in a weathering sequence mica-vermiculite- hydroxy interlayered vermiculite. European Journal of Soil Science, 50, 107115.Google Scholar
Prost, R. & Laperche, V. (1990) Far-infrared study of potassium in micas. Clays and Clay Minerals, 38, 351355.Google Scholar
Rhoades, J.D. & Coleman, N.T. (1967) Interstratification in vermiculite and biotite produced by potassium sorption – 1. Evaluation by simple X-ray diffraction pattern inspection. Soil Science Society of America Proceedings, 31, 366372.CrossRefGoogle Scholar
Sawhney, B.L. (1967) Interstratification in vermiculite. Clays and Clay Minerals, 15, 7584.CrossRefGoogle Scholar
Sawhney, B.L. (1969) Regularity of interstratification as affected by charge density in layer silicates. Soil Science Society of America Proceedings, 33, 4246.CrossRefGoogle Scholar
Sawhney, B.L. (1972) Selective sorption and fixation of cation by clay minerals: a review. Clays and Clay Minerals, 20, 93100.CrossRefGoogle Scholar
Wey, R., Saehr, D. & Le Dred, R. (1974) Obtention d’un minéral interstratifié régulier à partir d’une vermiculite- K. Comptes-Rendus de l’Académie des Sciences, Paris, 278, 23932395.Google Scholar