Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:32:01.278Z Has data issue: false hasContentIssue false

Factors influencing the intercalation degree (‘reactivity’) of kaolin minerals with potassium acetate, formamide, dimethylsulphoxide and hydrazine

Published online by Cambridge University Press:  09 July 2018

F. Franco
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Spain
M. D. Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Spain
*

Abstract

Factors influencing the degree of intercalation (‘reactivity’) of kaolinite group minerals have been investigated using six kaolin minerals, with variable crystallinity and particle size. Tests were performed to measure the degree of intercalation with potassium acetate, formamide, dimethylsulphoxide and hydrazine.

These experiments indicate that intercalation degree depends on a number of factors, including particle size, degree of ordering, type of guest molecules, method of intercalation, and presence and types of impurities. Anew method for determination of the degree of intercalation is proposed, which is not dependent on the intensity of complex reflections. The results indicate that formamide is the most sensitive reagent to distinguish differently ordered kaolin minerals whereas hydrazine appears as the most appropriate reagent to differentiate kaolin minerals from other 7 Å phases.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M. (1978) Unifying aspect of the 3-D structures of some intercalates of kaolinite. Clays and Clay Minerals, 33, 291–295.Google Scholar
Brindley, G.W., Kao, Ch-Ch., Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239–249.Google Scholar
Bristow, C.M. (1993) The genesis of the China Clays of South-West England. AMultistage story. Pp. 171–203 in: Kaolin, Genesis and Utilization (Murray, H.H., Bundy, W. and Harvey, C., editors). Special Publication, n° 1. The Clay Minerals Society, Boulder, Colorado.Google Scholar
Calvert, C.S. (1984) Simplified, complete CsCl- Hydrazine-Dimethylsulfoxide intercalation of kaolinite. Clays and Clay Minerals, 32, 125–130.Google Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 4, 241–248.Google Scholar
Cullity, B.D. (1956) Diffraction I: The directions of diffracted beams. Elements of X-ray diffraction (Cohen, M., consulting editor). Addison-Wesley Publishing Co., USA, pp. 78–103.Google Scholar
Fernandez-Gonzales, H., Weiss, A. & Lagaly, G. (1976) Über das Verhalten nordwest-spanicher kaoline bei der Bildung von Einlagerungsverbindungen. Keramische Zeitschrift, 28, 55–58.Google Scholar
Franco, F. (2000) Comportamiento térmico de los complejos de intercalación de minerales del grupo del caolın con acetato potásico, hidrazina y dimetilsulfóxido. PhD thesis, Universidade de Malaga, Spain, 241 pp.Google Scholar
Franco, F. & Ruiz Cruz, M.D. (2002) High-temperature X-ray diffraction, Differential thermal analysis and Thermogravimetry of the kaolinite- dimethylsulfoxide intercalation complex. Clays and Clay Minerals, 50, 47–55.Google Scholar
Frost, R.L., Kristóf, J., Paroz, J.N., Tran, T.H. & Kloprogge, J.T. (1998a) The role of water in the intercalation of kaolinite with potassium acetate. Journal of Colloid and Interface Science, 204, 227–236.Google Scholar
Frost, R.L., Kristóf, J., Paroz, J.N. & Kloprogge, J.T. (1998b) Role of water in the intercalation of kaolinite with hydrazine. Journal of Colloid and Interface Science, 208, 216–225.Google Scholar
Frost, R.L., Kristóf, J., Horvath, E. & Kloprogge, J.T. (1999) Deintercalation of dimethylsulfoxide intercalated kaolinite–ADTA-TG and Raman spectroscopic study. Thermochimica Acta, 327, 155– 166.Google Scholar
Frost, R.L., Paroz, G.N., van der Gaast, S.J., Zbik, M. & Kloprogge, J.T. (2002) Intercalation of kaolinite from Birdwood, South Australia. Applied Clay Science, 20, 177–187.Google Scholar
Gábor, M., Tóth, M., Kristóf, J. & Gábor, K.-H. (1995) Thermal behavior and decomposition of intercalated kaolinite. Clays and Clay Minerals, 43, 223–228.Google Scholar
Galán, E., Aparicio, P., Gonzalez, I. & Miras, A. (1998) Contribution of multivarite analysis to the correlation of some properties of kaolin with its mineralogical and chemical composition. Clay Minerals, 33, 65–75.Google Scholar
Gomes, C.S.F (1982) Relaçao entre capacidade de intercalaçao de caulinites e defeitos estructurais. Boletim da Sociedade Geologica de Portugal, 23, 55–64.Google Scholar
Gonzalez García, S. & Sánchez Camazano, M. (1965) Complejos de adsorción de los minerales de la arcilla con dimetil-sulfóxido. Anales de Edafología y Agrobiología, 24, 495–520.Google Scholar
Hinckley, D. (1963) Variability in ‘crystallinity’ values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Proceedings of the International Conference on Clays and Clay Minerals, 229–235.Google Scholar
Jackson, M.L. & Abdel-Kader, F.H. (1978) Kaolinite intercalation procedure for all sizes and types with X-ray diffraction spacing distinctive from other phyllosilicates. Clays and Clay Minerals, 26, 81–87.Google Scholar
Johnston, C.T. & Stone, D.A. (1990) Influence of hydrazine on the vibrational modes of kaolinite. Clays and Clay Minerals, 38, 121– 128.Google Scholar
Kerr, P.F (1949) Reference Clay Minerals. A.P.I. Project 49.Google Scholar
Kloprogge, J.T., Frost, R.L. & Kristóf, J. (1999) Complex expansion of kaolinite with hydrazine; some preliminary observations. Neues Jahrbuch fur Mineralogie Monatshefte, 49–61.Google Scholar
Klug, H.P. & Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. John Wiley and Sons, New York.Google Scholar
Kristóf, J., Frost, R.L., Kloprogge, J.T., Horváth, E. & Gábor, M. (1999) Thermal behaviour of kaolinite intercalated with formamide, dimethylsulfoxide and hydrazine. Journal of Thermal Analysis and Calorimetry, 56, 885–891.CrossRefGoogle Scholar
Lagaly, G. (1984) Clay organic reactions. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 311, 315–332.Google Scholar
Morandi, N., Rossi, P.L. & Tranne, C.A. (1992) Excursion guide-book of Vulcano and Lipari. Mediterranean Clay Meeting, MCM, 92, Lipari (Italy).Google Scholar
Olejnik, S., Aylmore, L.A.G., Posner, A.M. & Quirk, J.P. (1968) Infrared spectra of kaolin minerals-dimethylsulfoxide complexes. Journal of Physical Chemistry, 72, 241–249.CrossRefGoogle Scholar
Olejnik, S., Posner, A.M. & Quirk, J.P. (1970) The intercalation of polar organic compound into kaolinite. Clay Minerals, 8, 421–434.Google Scholar
Patterson, C.H. & Murray, H.H. (1975) Clays. Pp. 519–585 in: Industrial Minerals and Rocks, 4th edition (Lefond, S.J., editor), AIME, New York.Google Scholar
Plançon, A. & Zacharie, C. (1990) An expert system for the structural characterization of kaolinite. Clay Minerals, 25, 249–260.Google Scholar
Range, K.J., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals. Proceedings of the International Clay Conference, Tokyo, 1, 3–11.Google Scholar
Ruiz Cruz, M.D. & Reyes, E. (1998) Kaolinite and dickite formation during shale diagenesis: Isotopic data. Applied Geochemistry, 13, 95–104.CrossRefGoogle Scholar
Ruiz Cruz, M.D. & Franco, F.I. (1999) New data on the kaolinite-potassium acetate complex. Clay Minerals, 34, 565–577.Google Scholar
Ruiz Cruz, M.D. & Franco, F. (2000a) Thermal behaviour of the kaolinite-hydrazine intercalation complex. Clays and Clay Minerals, 48, 63–67.Google Scholar
Ruiz Cruz, M.D. & Franco, F. (2000b) Thermal decomposition of a dickite-hydrazine intercalation complex. Clays and Clay Minerals, 48, 586–592.Google Scholar
Sutheimer, S.H., Maurice, P.A. & Zhou, Q. (1999) Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics. American Mineralogist, 84, 620–628.Google Scholar
Van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Minerals and other Non-metallic Minerals. Pergamon Press, Oxford.Google Scholar
Wada, K. (1961) Lattice expansion of kao1in minerals by treatment with potassium acetate. American Mineralogist, 46, 78–91.Google Scholar
Wada, K. & Yamada, H. (1968) Hydrazine intercalationintersalation for differentiation of kaolin minerals from chlorites. American Mineralogist, 53, 334–339.Google Scholar
Weiss, A., Thielepape, W. & Orth, H. (1966) Intercalation into kaolinite minerals. Proceedings of the International Clay Conference, Jerusalem, 1, 277–293.Google Scholar
Wiewióra, A. & Brindley, G.W. (1969) Potassium acetate intercalation in kaolinites and its removal: effect of material characteristic. Proceedings of the International Clay Conference, Tokyo, 1, 723–733.Google Scholar