Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:15:38.577Z Has data issue: false hasContentIssue false

Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy

Published online by Cambridge University Press:  09 July 2018

H. Vali
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching, Federal Republic of Germany
H. M. Köster
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching, Federal Republic of Germany

Abstract

Expanding and non-expanding layers of interstratified clay minerals have been examined by high-resolution transmission electron microscopy. Permanent expansion of swelling layers under the electron beam was achieved by intercalation of n-alkylammonium ions, especially the octadecylammonium ion. Oriented flakes of clay minerals were prepared by embedding the expanded or non-expanded clay minerals in epoxy resin, followed by centrifugation before hardening of the resin. The minerals were then cut perpendicular to 001 using an ultramicrotome. Crystals of macroscopic trioctahedral vermiculites show homogeneous interplanar distances of 24 Å after intercalation of octadecylammonium ions. Crystals of dioctahedral soil vermiculites often show a central zone with non-expanding 10 Å layers; the outer zone shows a disturbed layer sequence extensively expanded by n-alkylammonium ions. After embedding in epoxy resin, vermiculites show stable 9·2 Å interplanar spacings but smectites expand to 13 Å. Montmorillonites of the Wyoming type show curved stacks of layers. Most of the layer stacks of montmorillonites of the Cheto type are split and disordered aggregates of single layers are formed. Crystals of illites and glauconites are built up of aggregated small stacks of 10 Å layers, the layer stacks consisting of 10 layers. Mostly the boundaries of the layer stacks are parallel to their 001 planes; sometimes low-angle boundaries are found. The dimensions of the layer stacks, ∼ 100 Å thick and some hundreds of Å in plane, are equal to the dimensions of the domains of coherent scattering of X-rays. The border layers between the layer stacks are identical with those 5 to 10% of layers which swell with glycerol or ethylene glycol during X-ray analysis. Some of the layer stacks of illite and glauconite crystals are expanded by octadecylammonium ions within a fortnight. The other stacks show unchanged 10 Å spacings. The different expanding behaviour of different layer stacks reflects the heterogeneity of the layer-charge distribution in the mica clay minerals. K-bentonites show the same expanding behaviour as illites and glauconites but the number of layers expanding with octadecylammonium ions is greater in K-bentonites than in illite crystals. Expanded mixed-layered minerals of the illite-smectite type show a different layer stacking sequence from illites. Random irregular stacking of mica layers with expanded layers are recognized rather than coherent stacks of mica layers. The crystals have a stepped morphology, perhaps effected by translations along the 001 plane. After reaction of the rectorite from Garland County with octadecylammonium ions, the non-expanded mica layers and the expanded smectite-like layers can be distinguished. The heterogeneity of the interlayer charges of the smectite layers is documented by the formation of alkyl double-layers with 17 Å spacings and alkyl triple-layers with 21 Å spaces in irregular sequence. The ‘rectorite’ from the Goto Mine expands nearly homogeneously in comparison with the rectorite from Garland County. After reaction with octadecylammonium ions, interplanar spacings of mostly 31 Å are observed but rarely spacings of 27 Å. The smectite layers of the corrensite from Kaubenheim are expanded by tetradecyl-ammonium ions to 18 Å spacings by formation of alkyl double-layers. A regular 1 : 1 layer structure of 14 Å chlorite layers and expanded 18 Å smectite layers with total spacing of 32 Å can be observed. Muscovite and pyrophyllite are not expandable by n-alkyl-ammonium ions within a fortnight. However, sporadic layers of celadonite crystals are expanded. Generally the 10 Å or 9·2 Å layers extend over the whole crystals of the three minerals. In celadonite crystals, disorder is caused sporadically by interrupted layers or slightly enlarged layer spacings.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125189 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. and Brown, G., editors). Mineralogical Society, London.CrossRefGoogle Scholar
Brindley, G.W. & Wardle, R. (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride. Am. Miner. 55, 12591272.Google Scholar
Brown, G. & Weir, A.H. (1963) The identity of rectorite and allevardite. Proc. Int. Clay Conf. Stockholm 1, 27-35.Google Scholar
Buckley, H.A., Bevan, J.C., Brown, K.M., Johnson, L.R. & Farmer, V.C. (1978) Glauconite and celadonite: two separate mineral species. Mineral. Mag. 42, 373382.Google Scholar
Dürmeier, A. (1981) Einlagerungsversuche mit K+- und Mg++-Ionen an 2:1-Schichtsilikaten. Diplomarbeit Techn. Univ. München, unveröffentlicht.Google Scholar
Eberhardt, J.P. (1982) High resolution electron microscopy appfied to clay minerals. Pp. 3150 in: Advanced Techniques for Clay Mineral Analysis (Fripiat, J. J., editor). Elsevier, Amsterdam & New York.Google Scholar
Eberhart, J.P. & Triki, R. (1972) Description d'une technique permettant d'obtenir des coupes minces de minéraux argileux par ultramicrotomie. J. Microscopy 15, 111120.Google Scholar
Eberl, D. (1978) Reaction series for dioctahedral smectites. Clays Clay Miner. 26, 327340.Google Scholar
Foster, M.D. (1963) Interpretation of the composition of vermiculites and hydrobiotites. Clays Clay Miner. 10, 7089.Google Scholar
Güven, N. (1974) Electron-optical investigations on montmorillonites. I. Cheto, Campberteaux and Wyoming montmorillonites. Clays Clay Miner. 22, 155165.Google Scholar
Hanzsen, K.J. (1967) Neue Erkenntnisse über Auflösung und Kontrast im elektronenmikroskopischen Bild. Die Naturwissenschaften 54, 125133.Google Scholar
Henning, K.H. & Landgraf, K.F. (1979) über Beziehungen zwischen Morphologie und Kristallchemie der dioktaedrischen Dreischichtsilikate. Beitr. Min. Technol. 1, 4364.Google Scholar
Hower, J. (1967) Order of mixed-layering in illite/montmorillonites. Clays Clay Miner. 15, 6374.CrossRefGoogle Scholar
Hower, J. & Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. Am. Miner. 51, 825854.Google Scholar
Kerschreiter, H. (1975) Mineralogische und kristallehemische Untersuchungen am Nontronit yon Hundsangen (Westerwald) und den Montmorilloniten yon Göpfersgrün und Groschlattengrün (Nordostbayern). Diplomarbeit Techn. Univ. München, unveröffentlicht.Google Scholar
Kodama, H. (1958) Mineralogical study on some pyrophyllites in Japan. Mineral. J. 2, 236245.Google Scholar
Köster, H.M. (1960) Nontronit und Picotit aus dem Basalt des öberges bei Hundsangen, Westerwald. Beitr. Miner. Petrogr. 7, 7175.Google Scholar
Köster, H.M. (1977) Die Berechnung kristallchemischer Strukturformeln von 2:l-Schichtsilikaten unter Berficksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Miner. 12, 4554.Google Scholar
Köster, H.M. (1982) The crystal structure of 2:1 layer silicates. Proc. Int. Clay Conf. Bologna and Pavia, 4171.Google Scholar
Kohler, E. & Köster, H.M. (1976) Zur Mineralogie, Kristallchemie und Geochemie kretazischer Glaukonite. Clay Miner. 11, 273302.Google Scholar
Kotsis, I. & Jonas, K. (1980) Die Entwicklung des Porzellangefiiges. Tell 1. Kennzeichen der Porzellanrohstoffe. Keram. Zeitsehr. 5, 253257.Google Scholar
Lagaly, G. (1979) The “layer charge” of regular interstratified 2:1 clay minerals. Clays Clay Miner. 27, 110.Google Scholar
Lagaly, G. & Weiss, A. (1971) Über die Bildung sequenzisomerer Dreischichtsilicate bei der Aufbereitung von Tonmineralen. Z. Pflanzenernährung u. Bodenkunde 130, 2536.Google Scholar
Lee, S.Y. & Jackson, M.L. (1975) Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron-microscopy. Clays Clay Miner. 23 125129.Google Scholar
Nemez, E. (1973) Tonminerale. Akademischer Verlag, Budapest.Google Scholar
Oberlin, A. & Mering, J. (1966) Observations sur l'hectorite (etude en microscopie et diffraction electronique). Bull. Soc. Franc. Miner. Cristallogr. 89, 2940.Google Scholar
Reid, N. (1975) Ultramicrotomy. Elsevier Publ. Co., New York.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249304. in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. and Brown, G., editors). Mineralogical Society, London.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite/montmorillonites. Clays Clay Miner. 18, 2536.Google Scholar
Rühlicke, G. (1982) Ladungsverhältnisse in K-fixierenden Tonmineralen. Dissertation Techn. Univ. Müinchen.Google Scholar
Saghrawanian, B. (1977) Mineralogische und kristallchemische Untersuchungen an drei amerikanischen Bentonitproben yon Chambers / Arizona, Otay / Californien, Santa Rita/New Mexico und Hectorit yon Hector / Californien. Diplomarbeit Techn. Univ. München, unveröfferentlicbt.Google Scholar
Shimoda, S. (1978) Interstratified minerals. Pp. 265322 in: Clays and Clay Minerals of Japan (Sudo, T. and Shimoda, S., editors). Elsevier, Amsterdam & New York, 326 pp.CrossRefGoogle Scholar
Spurr, A.R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastructure Res. 26, 3143.Google Scholar
Sudo, T. & Shimoda, S. (1977) lnterstratified clay minerals—-mode of occurrence and origin. Minerals Sci. Eng. 9, 324.Google Scholar
Sudo, T., Shimoda, S., Yotsumoto, H. & Aita, S. (1981) Electron Micrographs of Clay Minerals. Elsevier, Amsterdam & New York, 203 pp.Google Scholar
Vogt, K. & Köster, H.M. (1978) Zur Mineralogie, Kristallchemie und Geochemie einiger MontmoriUonite aus Bentoniten. Clay Miner. 13, 2543.Google Scholar