Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:46:39.575Z Has data issue: false hasContentIssue false

The evolution of textural properties of Na/Ca-bentonite following hydrothermal treatment at 80 and 300ºC in the presence of Fe and/or Fe oxides

Published online by Cambridge University Press:  09 July 2018

A. Neaman*
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), Ecole Nationale Supérieure de Géologie, UMR 7569 CNRSINPL, BP 40, 54501, Vandoeuvre-lès-Nancy, France
D. Guillaume
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques(G2R), Université Henri Poincaré, UMR 7566CNRS-UHP-INPL-CREGU, BP239, 54506, Vandoeuvrelès-Nancy, France
M. Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), Ecole Nationale Supérieure de Géologie, UMR 7569 CNRSINPL, BP 40, 54501, Vandoeuvre-lès-Nancy, France
F. Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), Ecole Nationale Supérieure de Géologie, UMR 7569 CNRSINPL, BP 40, 54501, Vandoeuvre-lès-Nancy, France
*

Abstract

The evolution of textural properties of Na/Ca-bentonite from Wyoming (MX-80) was studied by adsorption of nitrogen, water vapour, and ethylene glycol monoethyl ether. Clay suspensions were heated at 80 and 300ºC for up to 9 months in the absence of or in the presence of Fe and/or Fe oxides. The treatment without Fe did not change the textural properties of the samples significantly. The treatment at 80ºC in the presence of Fe resulted in a considerable increase in the external surface areas of the samples. The total and external surface areas and swelling capacities of the samples decreased following the treatment at 300ºC in the presence of Fe and Fe oxides. In the case of larger additions of Fe, the treatment at 300ºC resulted in a considerable decrease in the total and external surface areas and swelling capacity of the sample and in the formation of a network of large-size pores, in which all the pores were connected.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L., Masion, A. & Thomas, F. (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324336.Google Scholar
Barrett, E.P., Joyner, L.G. & Halenda, P.H. (1951) Determination of pore volumes and area distributions in porous substances. I. Computation from nitrogen isotherms. Journal of American Chemical Society, 73, 373380.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of American Chemical Society, 60, 309319.Google Scholar
Cases, J.M., Bérend, I., Besson, G., François, M., Uriot, J.P., Thomas, F. & Poirier, J.E. (1992) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 1. The sodium-exchanged form. Langmuir, 8, 27302739.Google Scholar
Carter, D.L., Mortland, M.M. & Kemper, W.D. (1986) Specific surface. Pp. 413423 in. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods (A. Klute, editor). Agronomy Monograph No. 9. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.Google Scholar
Cihacek, L.J. & Bremner, J.M. (1979) A simplified glycol monoethyl ether procedure for assessment of soil surface area. Soil Science Society of America Journal, 43, 821822.Google Scholar
de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhollf, J.C.P., van der Heuvel, A. & Osinga, Th.J. (1966) The t-curve of multiplayer N2-adsorption. Journal of Colloid and Interface Science, 21, 405414.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity, 2nd edition. Academic Press, London.Google Scholar
Guillaume, D. (2002) Etude expérimentale du système fer – smectite en présence de solution à 80ºC et 300ºC. Thèse de doctorat, Université Henri Poincaré, Nancy, France.Google Scholar
Guillaume, D., Neaman, A., Cathelineau, M., Mosser- Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F., Baronnet, A. & Michau, N. (2003) Experimental synthesis of chlorite from smectite at 300ºC in the presence of iron metal. Clay Minerals (in press).Google Scholar
Harkins, W.D. & Jura, G. (1944) An absolute method for the determination of the area of a finely divided crystalline solid. Journal of American Chemical Society, 66, 13661375.Google Scholar
Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109129.Google Scholar
Müller-Vonmoos, M., Kahr, G., Bucher, F., Madsen, F.T. & Mayor, P.-A. (1991) Untersuchungen zum Verhalten von Bentonit in Kontakt mit Magnetit und Eisen unter Endlagerbedingungen. NTB 91–14. Nagra, Hardstras se 73, CH-5430, Wettingen, Switzerland.Google Scholar
Poirier, J.E., François, M., Cases, J.M. & Rouquerol, J. (1987) Study of water adsorption of Na-montmorillonite. New data owing to the use of a continuous procedure. Pp. 473482 in: Proceedings of the Second Engineering Foundation Conference on Fundamental Adsorption (A.I. Liapis, editor). AIChE Publications, New York.Google Scholar
Rather-Zohar, Y., Banin, A. & Chen, Y. (1983) Oven drying as a pretreatment for surface-area determination of soils and clays. Soil Science Society of America Journal, 47, 10561058.Google Scholar
Sauzéat, E., Guillaume, D., Neaman, A., Mosser-Ruck, R., Peiffert, C., Dubessy, J., Villiéras, F., Cathelineau, M. & Yvon, J. (2001) MX-80: une argile de référence méthodologique pour l’ANDRA. Pp. 286292 in: Recherches pour le stockage des déchets radioactifs à haute activitéet à vie longue. Bilan Etudes et Travaux 2000 . Collection Les Rapports ANDRA, Agence nationale pour la gestion des déchets radioactifs. Châtenay-Malabry, France.Google Scholar
Tessier, D. (1984) Etude expérimentale de l’organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation . Thèse de doctorat d’état, Université Paris VII, INRA Versailles, France.Google Scholar
Touret, O., Pons, C.H., Tessier, D. & Tardy, Y. (1990) Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau. Clay Minerals, 25, 217233.Google Scholar
Van Damme, H. & Ben Ohoud, M. (1990) From flow to fracture and fragmentation in colloidal media. 2: Loca l order and f ragmentat ion geometry. Pp. 105116 in: Disorder and Fracture (Charmet, J.C. et al ., editors). Plenum Press, New York.Google Scholar
Villiéras, F., Yvon, J., François, M., Cases, J.M., Lhote, F. & Uriot, J.-P. (1993) Micropore formation due to thermal decomposition of hydroxide layer of Mgchlorites: interactions with water. Applied Clay Science, 8, 147168.CrossRefGoogle Scholar