Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T17:31:09.590Z Has data issue: false hasContentIssue false

Evidence of contrasting low-grade metamorphic conditions from clay mineral assemblages in Triassic Alpujárride- Maláguide transitional units in the Betic Cordilleras, Spain

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz*
Affiliation:
Departamento de Quimica Inorgániea, Cristalografia y Mineralogía, Facultadde Ciencias, Campus de Teatinos, 18071 Málaga, Spa
F. Franco
Affiliation:
Departamento de Quimica Inorgániea, Cristalografia y Mineralogía, Facultadde Ciencias, Campus de Teatinos, 18071 Málaga, Spa
C. Sanz De Galdeano
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Facultad de Ciencias, 18071-Granada, Spain
J. Novák
Affiliation:
Institute of Geology, Rozvojovà 135, 26502 Prague, Czech Republic
*

Abstract

Triassic sequences from 'intermediate units' between the Alpujárride and the Malâguide complexes (Betic Cordilleras, Spain) of the westernmost part of the Cordilleras (Casares area) occur as four superimposed tectonic units; the uppermost unit shows lithological characteristics similar to those of the Malâguide complex, changing progressively at increasing depth, towards lithologies typical of the Alpujárride complex. The units studied, with a maximum thickness of ~400 m, record important variations in metamorphic pressures, according to the b parameter of white micas: from low-pressure metamorphism (in the unper unit) to high-pressure faciès series (in the deepest one). The mean b values range from 8.988 Å in the uppermost unit (Crestellina) to 9.042 Å in the lowermost one (Jubrique). The lowest metamorphic grade is represented by mineral assemblages consisting of phengite + intermediate Na-K white mica ± Fe-chlorite ± sudoite ± pyrophyllite, which record temperatures of ~300°C and pressures of 1.5—3 kbar. At increasing tectonic depth, intermediate Na-K mica and pyrophyllite disappear and the metamorphic assemblages consist of phengite ± paragonite ± margarite + Mg-chlorite ± sudoite, which record minimum pressures of ~7 kbar and temperatures in the order of 400—450°C. These mineral assemblages provide evidence of the passage from collisional to extensional geotectonic settings. The units showing different metamorphic patterns were juxtaposed tectonically, after the development of metamorphic mineral assemblages.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, I., Nieto, F., Peacor, D.R & Velilla, N. (2003) Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuna (Spain) Clay Minerals, 38, 1—23. CrossRefGoogle Scholar
Alt, J.C & D.A.H., Teagle (1998) Probing the TAG hydrothermal mound and stockwork: Oxygen-isotope profiles from deep ocean drilling. Proceedings of the Ocean Drilling Program, Scientific Results, 158,285—295.Google Scholar
P., Àrkai (2002) Phyllosilicates in very low-grade metamorphism: transformation to micas. Pp. 463—478.in: Micas: Crystal Chemistry & Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. & Guggenheim, S., editors). Reviews in Mineralogy & Geochemistry, 46. Mineralogical Society of America and the Geochemical Society, Washington, D.C.Google Scholar
J.M., Azafiôn (1994) Metamorfismo de alta presiôn/baja temperatura, baja presiôn/alta temperatura y tectônica del Complejo Alpujàrride (cordilleras Bético- Rifenas). PhD thesis, Universidad de Granada, Spain, 331 pp.Google Scholar
J.M., Azafiôn & Crespo-Blanco, A. (2000) Exhumation during a continental collision inferred from the tectonometamorphic evolution of the Alpujàrride Complex in the Central Betics (Alborân Domain, SE Spain). Tectonics, 19, 549—565.Google Scholar
Bouybauene, M.L (1993) Etude petrologique des metapelites Sebtides supérieures, Rif Interne, Maroc: Une évolution métamorphique de haute pression. PhD thesis, Université Mohammmed V, Rabat, Morocco, 151 pp.Google Scholar
K., Bûcher & Frey, M. (1994) Petrogenesis of Metamorphic Rocks. Springer-Verlag, Berlin, 318 pp.Google Scholar
M., Durand-Delga (1966) Notice de Titres et Travaux. Imprimerie Priester, Paris, 43 pp.Google Scholar
M., Durand-Delga & Fontboté J.M. (1980) Le Cadre Structural de la Méditerranée Occidentale. 26 Congrès Géeologique Internacional, Paris.Google Scholar
Essene, E.J & Peacor, D.R (1995) Clay mineral thermometry a critical perspective. Clays and Clay Minerals, 43, 540—553.CrossRefGoogle Scholar
Fransolet, A.M & Schreyer, W. (1984) Sudoite, di/ trioctahedral chlorite: A stable low-temperature phase in the system MgO-Al203-Si02-H20. Contributions to Mineralogy and Petrology, 86, 409—417.CrossRefGoogle Scholar
Frey, M. (1969) A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contributions to Mineralogy and Petrology, 24, 63—65.CrossRefGoogle Scholar
Guidotti, C.V & Sassi, F.P (1976) Muscovite as petrogenetic indicator mineral in pelitic schists. Neues Jahrbuch fur Minéralogie Abhandlungen, 127, 97—142.Google Scholar
Guidotti, C.V & Sassi, F.P (1986) Classification and correlation of metamorphic faciès series by means of muscovite b0 data from low grade metapelites. Neues Jahrbuch fur Minéralogie Abhandlungen, 153, 363—380.Google Scholar
Kisch, H.J (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289—493 in: Diagenesis in Sediments and Sedimentary Rocks (Larsen, G. & Chilingar, G.V. editors). Elsevier, Amsterdam.Google Scholar
Kisch, H.J (1990) Calibration of the anchizone; a critical comparison of illite ‘crystallinity’ scales used for definition. Journal of Metamorphic Geology, 8, 31—46.Google Scholar
Kisch, H.J (1991) Illite crystallinity; recommendations on sample preparation, X-ray diffraction settings, and interlaboratoy samples. Journal of Metamorphic Geology, 9, 665—670.CrossRefGoogle Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277—279.Google Scholar
Kùbler, B. (1968) Evaluation quantitative du métamorphisme par la cistallinité de Pillite. Etat des progrès réalisés ces dernières années. Bulletin Centre Recherche Pau, S.N.P.A., 2, 385—397.Google Scholar
Lâzaro, C, Ruiz Cruz, M.D & Sanz de Galdeano, C. (2003) Caracteristicas metamôrficas del Triâsico Malâguide en las unidades intermedias del sector de Diezma (Sierra Arana, Cordillera Bética). Boletin de la Sociedad Espanola de Mineralogia, 26, 123—136.Google Scholar
Leoni, L. (2001) New standarized illite crystallinity data from low- to very low-grade metamorphic rocks (Northern Apennines, Italy). European Journal of Mineralogy, 13, 1109—1118.CrossRefGoogle Scholar
Li, G., Peacor, D.R, Merriman, R.J & Roberts, B. (1994) The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscoviteparagonite in a mudrock from central Wales, United Kingdom. Clays and Clay Minerals, 42, 369—381.CrossRefGoogle Scholar
Livi, K.J.T., Veblen, D.R, Ferry, J.M & Frey, M. (1997) Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of Central Switzerland. Journal of Metamorphic Geology, 15, 323—344.CrossRefGoogle Scholar
Livi, K.J.T., Ferry, J.M, Veblen, D.R, Frey, M. & J.A.D., Connolly (2002) Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland. European Journal of Mineralogy, 14, 647—672.CrossRefGoogle Scholar
Massone, H.J & Schreyer, W. (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology, 96, 212—224.Google Scholar
Martin-Algarra, A. (1987) Evoluciôn geolôgica alpina del contacta entre las Zonas Internas y las Zonas Externas de la Cordillera Bética.PhD thesis Universidad de Granada, Spain, 1171 pp. Google Scholar
Merriman, R.J (2002) Contrasting clay mineral assemblages in British Lower Palaeozoic slate belts: the influence of geotectonic setting. Clay Minerals, 37, 207—219.CrossRefGoogle Scholar
Merriman, R.J & Frey, M. (1999) Patterns of very low grade metamorphism in metapelitic rocks. Pp. 61—107 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Merriman, R.J & Peacor, D.R (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Nieto, F. & Sanchez Navas, A. (1994) A comparative XRD and TEM study of the physical meaning of the white mica ‘crystallinity’ index. European Journal of Mineralogy, 6, 611—621.CrossRefGoogle Scholar
Puga, E., Diaz de Federico, A. & Nieto, J.M (2002) Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic Zone: A review. Geodinamica Acta, 15, 23—43.CrossRefGoogle Scholar
Roberts, B. & Merriman, R.J (1985) The distinction between Caledonian burial and regional metamorphism in metapelites from North Wales: an analysis of isocryst patterns. Journal of the Geological Society London, 142, 189—200.CrossRefGoogle Scholar
Robinson, D. & Bevins, R.E (1986) Incipient metamorphism in the Lower Palaeozoic marginal basin of Wales. Journal of Metamorphic Geology, 4, 101—113.CrossRefGoogle Scholar
M.D., Ruiz Cruz (1999) New data for metamorphic vermiculite. European Journal of Mineralogy, 11, 533—548.Google Scholar
M.D., Ruiz Cruz (2001) Mixed-layer mica-chlorite in very low-grade metaclastites from the Malaguide Complex (Betic Cordilleras, Spain). Clay Minerals, 36, 307—324.Google Scholar
M.D., Ruiz Cruz & Rodriguez Jimenez, P. (2002) Correlation between crystallochemical parameters of phyllosilicates and mineral faciès in very lowgrade metasediments of the Betic Cordilleras (Spain): A synthesis. Clay Minerals, 37, 169—185.Google Scholar
M.D., Ruiz Cruz, Sanz de Galdeano, C. & Lâzaro, C. (2005) Metamorphic evolution of Triassic rocks from the transition zone between the Malaguide and the Alpujârride complexes (Betic Cordilleras, Spain). European Journal of Mineralogy, 17, 81—91.Google Scholar
C., Sanz de Galdeano (1997) La Zona Interna Bético- Rifena (Antécédentes, unidades tectônicas, correlaciones y bosquejo de reconstruction paleogeogrdflca). Monogrâfica Tierras del Sur, Universidad de Granada, Spain, 316 pp.Google Scholar
C., Sanz de Galdeano & Alfaro, P. (2004) Tectonic significance of the present relief of the Betic Cordillera. Geomorphology, 63, 178—190.Google Scholar
C, Sanz de Galdeano, A.C., Lopez Garrido & Andreo, B. (1999) The stratigraphie and tectonic relationships of the Alpujârride and Malaguide complexes in the western Betic Cordillera (Casares, prov. of Malaga, South Spain). Comptes Rendues Académie Sciences, Paris, 328, 113—119.Google Scholar
C, Sanz de Galdeano, Andreo, B., Garcia-Tortosa, F.J & Lôpez-Garrido, A.C (2001) The Triassic palaeogeographic transition between the Alpujârride and Malaguide complexes, Betic-Rif Internal Zone. Palaeo, 167, 157—173.Google Scholar
Sassi, F.P (1972) The petrologic and geologic significance of the b0 value of potassic white micas in lowgrade metamorphic rocks. An application to the Eastern Alps. Tschermak Mineralogische und Petrographische Mitteilungen, 18, 105—113.Google Scholar
Sassi, F.P & Scolari, A. (1974) The b0 values of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contributions to Mineralogy and Petrology, 45, 143—152.CrossRefGoogle Scholar
Theye, T., Seidel, E. & Vidal, O. (1992) Carpholite, sudoite and chloritoid in low-grade high-pressure metapelites from Crete and the Péloponnèse, Greece. European Journal of Mineralogy, 4, 487—507.CrossRefGoogle Scholar
Warr, L.C & Rice, H.N (1994) Interlaboratory standarization and calibration of clay minerals crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141—152.CrossRefGoogle Scholar