Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T22:48:47.306Z Has data issue: false hasContentIssue false

Esterified lignins from Pinus caribaea as bentonite-dispersing agents

Published online by Cambridge University Press:  13 March 2018

Nacarid Delgado*
Affiliation:
Área de Bioproductos, Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Coronel, Biobío, Chile Laboratorio de Petroquímica y Surfactantes (LPS), Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
Fredy Ysambertt
Affiliation:
Laboratorio de Instrumentación Analítica (LIA), Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
Raúl Ochoa
Affiliation:
Laboratorio de Petroquímica y Surfactantes (LPS), Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
Gerson Chávez
Affiliation:
Laboratorio de Petroquímica y Surfactantes (LPS), Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
Bélgica Bravo
Affiliation:
Laboratorio de Petroquímica y Surfactantes (LPS), Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
Jorge Santos
Affiliation:
Área de Bioproductos, Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Coronel, Biobío, Chile
Danny E. García
Affiliation:
Laboratorio de Fitoquímica, Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción (UCSC), Biobío, Chile Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS). UCSC, Biobío, Chile Investigador Asociado Área de Bioproductos, UDT, UdeC, Concepción, Biobío, Chile
*

Abstract

Chemical modification of kraft lignin from Pinus caribaea (Sénécl.) W.H.G. was performed with cyclic anhydrides (succinic, maleic and glutaric) assisted by microwave radiation. Esterification of the lignin was proven by the mass increase and Fourier Transform Infrared (FTIR) spectroscopy. Aqueous suspensions of bentonite were prepared using unmodified lignin and the corresponding derivatives as dispersants. Suspensions were evaluated in term of stability, viscosity and dispersibility. The esterified derivatives showed better dispersing properties than the neat lignin because the derivatives-based suspensions were less viscous. The dispersing properties of lignin and the esterified derivatives were compared with those of a high-molecular-weight lignin fraction obtained by ultrafiltration. In addition, two commercial lignosulfonate dispersants commonly used for drilling muds were used as references. The high-molecular-weight esterified derivatives proved to be better dispersants than their unfractionated counterparts. In general, the esterified derivatives showed similar properties to those obtained with the commercial dispersants. Modified lignin based on succinic-, maleic- and glutaric-anhydride is expected to play a key role in the design of novel bio-based dispersants for drilling-mud applications.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Miroslav Pospíšil

References

REFERENCES

Boeriu, C.G., Bravo, D., Gosselink, R.J.A. & Van Dam, J.E.G. (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20, 205218.Google Scholar
Caenn, R., Darley, H.C.H & Gray, G.R (2011) Composition and Properties of Drilling and Completion Fluids, pp. 1329. Elsevier Inc., Oxford.Google Scholar
Cerrutti, B.M., De Souza, C.S., Castellan, A., Ruggiero, R. & Frollini, E. (2012) Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Industrial Crops and Products, 36, 108115.CrossRefGoogle Scholar
Chakar, F.S. & Ragauskas, A.J. (2004) Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 20, 131141.CrossRefGoogle Scholar
Chen, Ch-Z., Li, M-F., Wu, Y-Y. & Sun, R-C. (2014) Modification of lignin with dodecyl glycidyl ether and chlorosulfonic acid for preparation of anionic surfactant. RSC Advances, 4, 1694416950.Google Scholar
Chen, S., Shen, S., Yan, X., Mi, J., Wang, G., Zhang, J. & Zhou, Y. (2016) Synthesis of surfactants from alkali lignin for enhanced oil recovery. Journal of Dispersion Science and Technology, 37, 15741580.Google Scholar
Delgado, N., Ysambertt, F., Bravo, B., Chávez, G. & Márquez, N. (2015) Esterificación asistida por microondas de lignina de pino con anhídridos alquilsuccínicos. Revista Iberomericana de Polímeros, 16, 2842.Google Scholar
Delgado, N., Ysambertt, F., Chávez, G., Bravo, B., Márquez, N. & Bullón, J. (2012) Microwave assisted synthesis of acylated lignin derivatives of different molar mass with possible surface activity. Avances en Ciencia e Ingeniería, 3, 1931.Google Scholar
Delgado, N., Ysambertt, F., Padilla, E., Chávez, G., Bravo, B. & Márquez, N. (2014) Estabilización de emulsiones con mezclas de un surfactante no iónico y derivados de lignina sintetizados con asistencia de microondas. Revista de la Universidad del Zulia, 5, 4056.Google Scholar
Gan, L., Zhou, M., Yang, D. & Qiu, X. (2013) Preparation and evaluation of carboxymethylated lignin as a dispersant for aqueous graphite suspension using Turbiscan Lab Analyzer. Journal of Dispersion Science and Technology, 34, 644650.Google Scholar
Gordobil, O., Egüés, I. & Labidi, J. (2016) Modification of Eucaliptus and Spruce organosolv lignins with fatty acids to use as filler in PLA. Reactive and Functional Polymers, 104, 4552.Google Scholar
Homma, H., Kubo, S., Yamada, T., Koda, K., Matsushita, Y. & Uraki, Y. (2010) Conversion of technical lignins to amphiphilic derivatives with high surface activity. Journal of Wood Chemistry and Technology, 30, 164174.CrossRefGoogle Scholar
Homma, H., Kubo, S., Yamada, T., Matsushita, Y. & Uraki, Y. (2008) Preparation and characterization of amphiphilic lignin derivatives as surfactants. Journal of Wood Chemistry and Technology, 28, 270282.Google Scholar
Konduri, M., Kong, F. & Fatehi, P. (2015) Production of carboxymethylated lignin and its application as a dispersant. European Polymer Journal, 70, 371383.CrossRefGoogle Scholar
Laurichesse, S. & Avérous, L. (2014) Chemical modification of lignins: Towards biobased polymers. Progress Polymer Science, 39, 12661290.Google Scholar
Li, Z. & Ge, Y. (2011) Extraction of lignin from sugar cane bagasse and its modification into a high performance dispersant for pesticide formulations. Journal of the Brazilian Chemical Society, 22, 18661871.CrossRefGoogle Scholar
Li, Y., Zhu, H., Yang, Ch., Zhang, Y., Xu, J. & Lu, M. (2014) Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant. Construction and Building Materials, 52, 116121.CrossRefGoogle Scholar
Lin, X., Zhou, M., Wang, S., Lou, H., Yang, D. & Qiu, X. (2014) Synthesis, structure, and dispersion property of a novel lignin-based polyoxyethylene ether from Kraft Lignin and poly(ethyleneglycol). ACS Sustainable Chemistry & Engineering, 2, 19021909.Google Scholar
Liu, C.F., Sun, R.C., Qin, M.H., Zhang, A.P., Ren, J.L., Ye, J., Luo, W. & Cao, Z.N. (2008) Succinoylation of sugarcane bagasse under ultrasound irradiation. Bioresource Technology, 99, 14651473.CrossRefGoogle ScholarPubMed
Lora, J. (2008) Monomers, Polymers and Composites from Renewable Resources, pp. 225242. Elsevier Ltd, Oxford.CrossRefGoogle Scholar
Maldhure, A.V., Chaudhari, A.R. & Ekhe, J.D. (2011) Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. Journal of Thermal Analysis and Calorimetry, 103, 625632.Google Scholar
Matsushita, Y., Inomata, T., Hasegawa, T. & Fukushima, K. (2009) Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass. Bioresource Technology, 100, 10241026.CrossRefGoogle ScholarPubMed
Matsushita, Y. & Yasuda, S. (2005) Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresource Technology, 96, 465470.CrossRefGoogle ScholarPubMed
Nada, A.M.A., El-Sakhawy, M. & Kamel, S.M. (1998) Infra-red spectroscopic study of lignins. Polymer Degradation and Stability, 60, 247251.CrossRefGoogle Scholar
Nadif, A., Hunkeler, D. & Käuper, P. (2002) Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresource Technology, 84, 4955.Google Scholar
Ouyang, X., Ke, L., Qiu, X., Guo, Y., Pang, Y. (2009) Sulfonation of Alkali Lignin and its potential use in dispersant for cement. Journal of Dispersion Science and Technology, 30, 16.Google Scholar
Rana, R., Langenfeld-Heyser, R., Finkeldey, R. & Polle, A. (2010) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology, 44, 225242.CrossRefGoogle Scholar
Ratanakamnuana, U., Atong, D. & Aht-Ong, D. (2012) Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydrate Polymers, 87, 8494.Google Scholar
Rojas, O.J., Bullón, J., Ysambertt, F., Forgiarini, A. & Argyropoulos, D.S. (2007) Materials, Chemical and Energy from Forest Biomass, pp. 182199. ACS Symposium Series 954, Washington, DC.CrossRefGoogle Scholar
Selyanina, S.B. & Selivanova, N.V. (2007) Hydrophilic-oleophilic properties of sulfate lignin. Russian Journal of Applied Chemistry, 80, 11401144.Google Scholar
Selyanina, S.B., Trufanova, M.V., Afanas′ev, N.I. & Selivanova, N.V. (2007) Surfactant properties of Kraft Lignins. Russian Journal of Applied Chemistry, 80, 18321835.Google Scholar
Thielemans, W. & Wool, R.P. (2005) Lignin esters for use in unsaturated thermosets: Lignin modification and solubility modeling. Biomacromolecules, 6, 18951905.Google Scholar
Toledano, A., Erdocia, X., Serrano, L. & Labidi, J. (2013) Influence of extraction treatment on Olive tree (Olea europaea) pruning lignin structure. Environmental Progress & Sustainable Energy, 32, 11871194.Google Scholar
Xiao, B., Sun, X.F. & Sun, R. (2001) The chemical modification of lignins with succinic anhydride in aqueous systems. Polymer Degradation and Stability, 71, 223231.Google Scholar
Yang, D., Qiu, X., Zhou, M. & Lou, H. (2007) Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Conversion and Management, 48, 24332438.Google Scholar
Zhou, M., Qiu, X., Yang, D., Lou, H. & Ouyang, X. (2007) High-performance dispersant of coal–water slurry synthesized from wheat straw alkali lignin. Fuel Process Technology, 88, 375382.Google Scholar
Zhou, M., Wang, W., Yang, D. & Qiu, X. (2015) Preparation of a new lignin-based anionic/cationic surfactant and its solution behavior. RSC Advances, 5, 24412448.Google Scholar
Zürcher, S. & Graule, T. (2005) Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. Journal of the European Ceramic Society, 25, 863873.Google Scholar