Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T16:43:57.987Z Has data issue: false hasContentIssue false

Electrical conduction in layer silicates investigated by combined scanning tunnelling microscopy and atomic force microscopy

Published online by Cambridge University Press:  09 July 2018

H. Lindgreen*
Affiliation:
Clay Mineralogical Laboratory, Geological Survey of Denmark and Greenland, Thoravej 8, DK-2400 Copenhagen NV, Denmark

Abstract

Layer silicates are generally assumed to be insulators, but electron transport may take place in nm thick particles. A combined scanning tunnelling-atomic force (STM-AFM) instrument using a conducting AFM tip has been constructed to investigate this conduction. Some layer silicates, e.g. micas (muscovite and biotite), are in fact semiconductors, conduction taking place through free electrons in the tetrahedral sheet (n-type semiconductivity) and probably through polaron hopping in the octahedral sheet. This implies that these minerals can be investigated by STM. Furthermore, micas show negative differential resistance (decreasing current with increasing voltage) at 2 – 5 V.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, T.R. & Quate, C.F. (1987) Atomic resolution imaging of a nonconductor by atomic force microscopy. J. Appl. Phys. 62, 25992602.Google Scholar
Arii, K. & Inuishi Y (1968) Electrical conduction in mica. Tech. Rep. Osaka Univ. 18, 385397.Google Scholar
Binnig, G., Quate, C.F. & Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930933.Google Scholar
Binnig, G., Gerber, C., Stoll, E., Albrecht, T. & Quate, C.F. (1987) Atomic resolution with atomic force microscope. Europhys Lett. 3, 12811287.Google Scholar
Blum, A.E. & Eberl, D.D. (1992) Determination of clay particle thicknesses and morphology using Scanning Force Microscopy. Proc. 7th Int. Symposium Water- Rock Interaction, Park City, Utah, 133136.Google Scholar
Castellan, G.W. (1969) Physical Chemistry. Addison- Wesley, Massachusetts, USA.Google Scholar
Crine, J.P., Friedman, A., Wertheimer, M.R. & Yelon, A. (1977) The relationship between chemical composition and electrical conductivity of some North American micas. Canad. J. Phys. 55, 270275.Google Scholar
Davidson, A.T. & Yoffe, A.D. (1968) Hopping electrical conduction and thermal breakdown in natural and synthetic mica. Phys. Status Solidi, 30, 741754.Google Scholar
Drake, B., Prater, C.B., Weisenhorn, A.L., Gould, S.A.C., Albrecht, T.R., Quate, C.F., Cannell, D.S., Hansma, H.G. & Hansma, P.K. (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science, 243, 15861589.Google Scholar
Engel, A. (1991) Biological applications of scanning sensor microscopes. Ann. Rev. Biophysical Chem. 20, 79108.CrossRefGoogle Scholar
Fan, F.F. & Bard, A.J. (1995) STM on wet insulators: Electroc hemistry or tunneling. Science, 270, 18491851.Google Scholar
Forouzan, F. & Bard, A.J. (1997) Evidence of Faradaic processes in scanning probe microscopy on mica in humid air. J. Phys. Chem. B, 101, 1087610879.Google Scholar
Gould, S.A.C., Drake, B., Prater, C.B., Weisenhorn, A.L., Manne, S., Hansma, H.G., Hansma, P.K., Massie, J., Longmire, M., Elings, V., Northern, B.D., Mukergee, B., Peterson, C.M., Stoeckenius, W., Albrecht, T.R. & Quate, C.F. (1990) From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope. J. Vac. Technol. A8, 369373.Google Scholar
Guckenberger, R. & Heim, M. (1995) STM on wet insulators: Electrochemistry or tunneling. Response. Science, 270, 18511852.Google Scholar
Guckenberger, R., Heim, M., Cevc, G., Knapp, H.F., Wiegrabe, W. & Hillebrand, A. (1994) Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. Science, 266, 15381540.Google Scholar
Hansma, P.K., Elings, V.B., Marti, O. & Bracker, C.E. (1988) Scanning tunnelling microscopy and atomic force microscopy: Application to biology and technology. Science, 242, 209215.CrossRefGoogle ScholarPubMed
Hartman, H., Sposito, G., Yang, A., Manne, S., Gould, S.A.C. & Hansma, P.K. (1990) Molecular-scale imaging of clay mineral surfaces with the atomic force microscope. Clays Clay Miner. 38, 337342.Google Scholar
Jakobsen, H.J., Nielsen, N.C. & Lindgreen, H. (1995) Sequences of charged sheets in rectorite. Am. Miner. 80, 247252.Google Scholar
Lindgreen, H., Garnæs, J., Hansen, P.L., Besenbacher, F., Lægsgaard, E., Stensgaard, I., Gould, S.A.C. & Hansma, P.K. (1991) Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM. Am. Miner. 76, 12181222.Google Scholar
Lindgreen, H., Garnæs, J., Besenbacher, F., Lægsgaard, E. & Stensgaard, I. (1992) Illite-smectite from the North Sea investigated by scanning tunneling microscopy. Clay Miner. 27, 331342.Google Scholar
Lyo, I. & Avouris, P. (1989) Negative differential resistance on the atomic scale. Science, 245, 13691371.Google Scholar
McColl, M. & Mead, C.A. (1965) Electron current through thin mica films. Trans. Metal. Soc. AIME, 233, 502511.Google Scholar
Meunier, M., Currie, J.F., Wertheimer, M.R. & Yelon, A. (1983) Electrical conduction in biotite micas. J. Appl. Phys. 54, 898905.Google Scholar
Tolland, H.G. & Strens, R.G.J. (1972) Electrical conduction in physical and chemical mixtures. Phys. Earth Planet. Int. 5, 380386.Google Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Miner. 19, 177193.CrossRefGoogle Scholar
Vrdoljak, G.A., Henderson, G.S., Fawcett, J.J. & Wicks, F.J. (1994) Structural relaxation of the chlorite surface imaged by the atomic force microscope. Am. Miner. 79, 107112.Google Scholar
Wang, Z., Hartman, T., Baumester, W. & Guckenberger, R. (1990) Thickness determination of biological samples with a z-calibrated scanning tunnelling microscope. Proc. Nat. Acad. Sci. 87, 93439347.Google Scholar
Wicks, F.J., Kjoller, K. & Henderson, G.S. (1992) Imaging the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope. Canad. Miner. 30, 8391.Google Scholar
Zbik, M. & Smart, R. (1998) Nano-morphology of kaolinites: comparative SEM and AFM studies. Clays Clay Miner. 46, 153160.Google Scholar