Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T01:39:15.621Z Has data issue: false hasContentIssue false

The Effect of Thermal Treatment on the Properties of Hydroxy-Al and Hydroxy-Ga Pillared Montmorillonite and Beidellite

Published online by Cambridge University Press:  09 July 2018

J. T. Kloprogge
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, P.O. Box 80.021, 3508 TA Utrecht
E. Booy
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, P.O. Box 80.021, 3508 TA Utrecht
J. B. H. Jansen
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, P.O. Box 80.021, 3508 TA Utrecht
J. W. Geus*
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, P.O. Box 80.021, 3508 TA Utrecht
*
Department of Inorganic Chemistry, University of Utrecht, P.O. Box 80.083, 3508 TB Utrecht, The Netherlands

Abstract

The pillaring process of montmorillonite and beidellite with Al and Ga polymers has been studied using XRD, IR, 27Al, 71Ga, and 29Si MAS NMR, TGA, TEM, N2 adsorption and chemical analyses. The Al adsorption maximum for montmorillonite is close to 5.5 mEq Al/g clay, whereas the maximum for Ga is higher. Basal spacings of both Ga- and Al-pillared clays vary between 16.7 and 18.8 Å. Freeze-drying of pillared products followed by calcination yielded more regular pillared structures. Pillaring montmorillonite increased the BET surface area from 35 m2/g to 350 m2/g mainly by the creation of micropores <20 Å in diameter. The Al-pillared clays are thermally stable to ∼700°C. Calcination of pillared montmorillonite liberates protons from the pillar, which diffuse into the clay sheet, lowering the thermal stability. In pillared beidellite, mainly silanol groups are formed by breaking Si-O-Al bonds. No reaction is observed between pillars and montmorillonite upon calcination, whereas in pillared beidellite a structural transformation links the pillar to inverted tetrahedra of the tetrahedral sheet. The basal spacing of Ga-pillared montmorillonite collapses to 9.5 Å at 350°C due to the Ga polymer decomposing to Ga3+ cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: TNO-TPD-TU Delft, Dept. of Inorganic Materials Chemistry, PO Box 595, 5600 AN Eindhoyen, The Netherlands.

References

Akitt, J.W. (1989) Multinuclear studies of aluminium compounds. Progr. NMR Spectr, 21, 1149.Google Scholar
Ames, L.L. & Sand, L.B. (1958) Factors effecting maximum hydrothermal stability in montmorillonites. Am. Miner, 43, 641648.Google Scholar
Barrer, R.M. (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, New York.Google Scholar
Barrer, R.M. & McLeod, D.M. (1955) Activation of montmorillonite by ion exchange and sorption complexes of tetraalkylammonium montmorillonites. Trans. Faraday Soc, 51, 12901300.Google Scholar
Bartley, G.J.J. (1988) Zirconium pillared clays. Catal. Toda, 2, 233241.Google Scholar
Bartley, G.J.J. & Burch, R. (1985) Zr-containing pillared clays. Part III. Influence of method of preparation on the thermal stability. Appl. Catal, 19, 175185.Google Scholar
Bellalloui, A., Plee, D. & Meriaudeau, P. (1990) Gallium containing pillared interlayer clays: preparation, characterization and catalytic properties. Appl. Catal, 63, 17110.Google Scholar
Bradley, S.M., Kydd, R.A. & Yamdagni, R. (1990a) Detection of a new polymeric species formed through the hydrolysis of gallium(III) salt solutions. J. Chem. Soc. Dalton Trans., 413-417.Google Scholar
Bradley, S.M., Kydd, R.A. & Yamdagni, R. (1990b) Comparison of the hydrolysis of gallium(III) and alu- minium(III) solutions by nuclear magnetic resonance spectroscopy. J. Chem. Soc. Dalton Trans. 2653-2656.Google Scholar
Brindley, G.W. & Sempels, R.E. (1977) Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner, 12, 229236.Google Scholar
Chourabi, B. & Fripiat, J.J. (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays Clay Miner, 29, 260268.Google Scholar
Diddams, P.A., Thomas, J.M., Jones, W., Ballantine, J.A. & Purnell, J.H. (1984) Synthesis, characterization and catalytic activity of beidellite-montmorillonite layered silicates and their pillared analogues. J. Chem. Soc., Chem. Commun. 1340-1342.Google Scholar
Fitzgerald, J.J., Dec, S.F. & Hamza, A. (1989) Observation of five-coordinated Al in pyrophyllite dehydroxylate by solid-state 27Al NMR spectroscopy at 14 T. Am. Miner, 74, 14051408.Google Scholar
Fyfe, C.A., Gobbi, G.C., Hartman, J.S., Klinowski, J. & Thomas, J.M. (1982) Solid-state magic-angle spinning aluminium-27 nuclear magnetic resonance studies of zeolites using a 400-MHz high-resolution spectrometer. /. Phys. Chem, 86, 12471250.Google Scholar
Grim, R.E. (1968) Clay Mineralogy, pp. 121-122, 316328. McGraw-Hill, New York.Google Scholar
Gu, B. & Doner, H.E. (1990) Adsorption of hydroxyl-Al polycations and destabilization of illite and montmorillonite suspension. Clays Clay Miner, 38, 493500.Google Scholar
Gurwitsch, L. (1912) Adsorption. Z. Chem. Ind. Kolloid, 11, 1719.CrossRefGoogle Scholar
Gurwitsch, L. (1923) Zur Kenntnis der heterogenen Katalyse. Z. Phys. Chem., Frankfur, 107, 235248.Google Scholar
Hofmann, J. & Klemen, R. (1950) Verlust der Austauschfāhigkeit von Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Chem, 262, 9599.CrossRefGoogle Scholar
Johansson, G. (1962) The crystal structures of [A12(0H)2(H2)8](S04)2.2H20 and [Al2(OH)2- (H20)8](Se04)2.2H20. Acta Chem. Scand, 16, 403–120.CrossRefGoogle Scholar
Kawano, M. & Tomita, K. (1991) X-ray powder diffraction studies of the rehydration properties of beidellite. Clay Clay Miner, 39, 7783.Google Scholar
Rentgens, A.P.M., Scholle, K.F.M.G.J. & Veeman, W.S. (1983) Effect of hydration on the local symmetry around aluminium in ZSM-5 zeolites, studied by 27Al nuclear magnetic resonance. J. Phys. Chem, 87, 43574360.Google Scholar
Kloprogge, J.T., van der Eerden, A.M.J., Jansen, J.B.H. & Geus, J.W. (1990a) Hydrothermal synthesis of Na- beidellite. Geologie Mijnbou, 69, 351357.Google Scholar
Kloprogge, J.T., Jansen, J.B.H. & Geus, J.W. (1990b) Characterization of synthetic Na-beidellite. Clays Clay Miner, 38, 409–114.Google Scholar
Kloprogge, J.T., Seykens, D., Geus, J.W. & Jansen, J.B.H. (1992a) Temperature influence on the A113 complex in partially neutralized aluminum solutions: an 27Al nuclear magnetic resonance study. J. Non-Cryst. Solid, 142, 8793.CrossRefGoogle Scholar
Kloprogge, J.T., Seykens, D., Jansen, J.B.H. & Geus, J.W. (1992b) An27Al nuclear magnetic resonance study on the optimalization of the development of the A113 polymer. J. Non-Cryst. Solid, 142, 94102.CrossRefGoogle Scholar
Lahav, N., Shani, U. & Shabtai, J. (1978) Cross-linked smectites, I. Synthesis and properties of hydroxy-alu- minum-montmorillonite. Clays Clay Miner. 26, 107115.Google Scholar
Malla, P.B. & Komarneni, S. (1990) Synthesis of highly microporous and hydrophyllic alumina-pillared montmorillonite: water-sorption properties. Clays Clay Miner, 38, 363372.Google Scholar
Montaland, L. (1911) Process for converting pinene into camphene. U.S. Patent 999,667.Google Scholar
Occelli, M.L. & Tindwa, R.M. (1983) Physicochemical properties of montmorillonite interlayered with cationic- oxyaluminum pillars. Clays Clay Miner, 31, 2228.Google Scholar
vanOlphen, H. & Fripiat, J.J. (editors) (1979) Data Flandbook for Clay Minerals and Other Non-Metallic Minerals. Pergamon Press, Oxford.Google Scholar
Pinnavaia, T.J., Landau, S.D., Tzou, M.-S. & Johnson, J.D. (1985) Layer cross-linking in pillared clays. J. Am. Chem. Soc, 107, 72227224.Google Scholar
Pinnavaia, T.J., Tzou, M.-S., Landau, S.D. & Raythatha, R.H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. J. Mol. Catal, 27, 195212.Google Scholar
Plee, D., Borg, F., Gatineau, L. & Fripiat, J.J. (1985a) High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays. J. Am. Chem. Soc, 107, 23622369.Google Scholar
Plee, D., Gatineau, L. & Fripiat, J.J. (1987) Pillaring processes with and without tetrahedral substitution. Clays Clay Miner, 35, 8188.Google Scholar
Plee, D., Schutz, A., Poncelet, G. & Fripiat, J.J. (1985b) Acid properties of bidimensional zeolite. Pp. 342-350 in: Catalysis by Acids and Bases (B. Imelik, C. Naccache, G. Coudurier, J. Ben Taarit & J.C. Vedrine, editors). Elsevier, Amsterdam.Google Scholar
Rausch, W.V. & Bale, H.D. (1964) Small-angle X-ray scattering from hydrolyzed aluminum nitrate solutions. J. Chem. Phys, 40, 33913394.Google Scholar
Schutz, A., Stone, W.E.E., Poncelet, G. & Fripiat, J.J. (1987) Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions. Clays Clay Miner, 35, 251261.Google Scholar
Sterte, J.P. (1990) Preparation and properties of pillared interstratified illite/smectite. Clays Clay Miner, 38, 609616.Google Scholar
Tennakoon, D.T.B., Jones, W. & Thomas, J.M. (1986) Structural aspects of metal-oxide pillared sheet silicates. J. Chem. Soc., Faraday Trans. I, 82, 30813090.Google Scholar
Tennakoon, D.T.B., Thomas, J.M., Jones, W., Carpenter, T.A. & Ramdas, S. (1986) Characterization of clay and clay-organic systems. J. Chem. Soc., Faraday Trans. I, 82, 545562.Google Scholar
Tichit, D., Fajula, F., Figueras, F., Ducourant, B., Mascherpa, G., Gurguen, C. & Bosquet, J. (1988) Sintering of montmorillonites pillared by hydroxy aluminum species. Clays Clay Miner, 36, 369375.Google Scholar
Uytterhoeven, J.B., Christner, L.G. & Hall, W.K. (1965) Studies of the hydrogen held by solids VIII: the decationated zeolites. J. Phys. Chem, 69, 21172126.CrossRefGoogle Scholar
Vermeulen, A.C., Geus, J.W., Stol, R.J. & de Bruyn, P.L. (1975) Hydrolysis-precipitation studies of aluminum(III) solutions. I. Titration of acidified aluminum nitrate solutions. J. Coll. Interf. Sci, 51, 449458.Google Scholar
Von Liebig (1865) Chemische Briefe. C.F. Winter’sche Verlagshandung, Leipzig, 96.Google Scholar
Weiss, C.A., Altaner, S.P. & Kirkpatrick, R.J. (1987) High resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions and chemical variations. Am. Miner, 72, 935942.Google Scholar
Yamanaka, S. & Brindley, G.W. (1979) High surface area solids obtained by reaction of montmorillonite with zirconylchloride. Clays Clay Miner, 27, 119124.Google Scholar
Yariv, S. & Heller-Kallai, L. (1973) I.R. evidence for migration of protons in H- and organo-montmorillonites. Clays Clay Miner, 21, 199200.Google Scholar