Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T07:16:32.110Z Has data issue: false hasContentIssue false

The effect of the octahedral cations on the dimensions of the palygorskite cell

Published online by Cambridge University Press:  09 July 2018

M. Suárez*
Affiliation:
Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
E. García-Romero
Affiliation:
Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, 28040 Madrid, Spain
M. Sánchez Del Río
Affiliation:
European Synchrotron Radiation Facility, BP 220 38043 Grenoble Cedex, France
P. Martinetto
Affiliation:
Institut Néel, Grenoble BP 166, F-38042 Grenoble Cedex 09, France
E. Dooryhée
Affiliation:
Institut Néel, Grenoble BP 166, F-38042 Grenoble Cedex 09, France
*

Abstract

High-resolution synchrotron X-ray diffraction recorded on a collection of palygorskites with different chemical compositions (obtained by analytical electron microscopy) permits unambiguous correlation of the crystallographic parameters a (or a sin β if a monoclinic phase is considered) with the nature of the octahedral sheet, i.e. with both the number of octahedral positions that are occupied and the type of octahedral cation. No significant changes in the lattice parameters b and c are observed. The unit cell modification consists essentially of an expansion in a as the number of cations with larger ionic radii (Mg2+ and Fe3+) predominates over smaller cations (Al3+). A linear dependency of a (or a sin β) on the chemical composition of the octahedral sheet was obtained that can be used for classifying palygorskite into compositional groups, using only conventional diffraction data, without the need for chemical analyses.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artioli, G. & Galli, E. (1994) The crystal structures of orthorombic and monoclinic palygorskite. Materials Science Forum, 166-169, 647652.CrossRefGoogle Scholar
Artioli, G., Galli, E., Burattini, E., Cappuccio, G. & Simeoni, S. (1994) Palygorskite from Bolca, Italy: a characterization by high-resolution synchrotron radiation powder diffraction and computerising modelling. Neues Jahrbuch für Mineralogie Monatshefte, 5, 217229.Google Scholar
Bradley, W.F. (1940) The structural scheme of attapulgite. American Mineralogist, 25, 405411.Google Scholar
Chiari, G., Giustetto, R. & Ricchiardi, G. (2003) Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. European Journal of Mineralogy, 15, 2133.CrossRefGoogle Scholar
Chirst, C.L., Hathaway, J.C., Hostler, P.B. & Shepard, A.O. (1969) Palygorskite: New X-ray data. American Mineralogist, 54, 198205.Google Scholar
Chisholm, J.E. (1990) An X-ray powder-diffraction study of palygorskite. The Canadian Mineralogist, 28, 329339.Google Scholar
Chisholm, J.E. (1992) Powder-diffraction patterns and structural models for palygorskite. The Canadian Mineralogist, 30, 6173.Google Scholar
Cibin, G., Mottana, A., Marcelli, A. & Brigatti, M.F. (2006) Angular dependence of potassium K-edge XANES spectra of trictahedral micas: Significance for the determination of the local structure and electronic behaviour of the interlayer site. American Mineralogist, 91, 11501162.CrossRefGoogle Scholar
Drits, V.A. & Alexandrava, V.A. (1966) On the crystallographic nature of palygorskites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 95, 551560.Google Scholar
Drits, V.A. & Sokolova, G.V. (1971) Structure of palygorskite. Soviet Physics Crystallography, 16, 288231.Google Scholar
Galán, E. & Carretero, I. (1999) A new approach to compositional limits for sepiolite and palygorskite. Clays and Clay Minerals, 47, 399409.CrossRefGoogle Scholar
García-Romero, E., Suárez, M. & Bustillo, M.A. (2004) Characteristics of a Mg-palygorskite in Miocene Rocks (Madrid Basin, Spain). Clays and Clay Minerals, 52, 486496.Google Scholar
García-Romero, E., Suárez, M., Oyarzun, R., López-García, J.A. & Regueiro, M. (2006) Formation of palygorskite in secondary faults from a large shear zone of Miocene age (Serrata de Nijar, SE Spain). Clays and Clay Minerals, 54, 324332.CrossRefGoogle Scholar
Giustetto, R. & Chiari, G. (2004) Crystal structure refinement of palygorskite from neutron powder diffraction. European Journal of Mineralogy, 16, 521532.CrossRefGoogle Scholar
Güven, N., Caillere, J.P.E. & Fripiat, J.J. (1992) The coordination of aluminum ions in the palygorskite structure. Clays and Clay Minerals, 40, 457461.CrossRefGoogle Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631674 in: Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy 19. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Mifsud, A., Routureau, M. & Fornes, V. (1978) Etude de l'eau dans la palygorskite a l'aide des analyses thermiques. Clay Minerals, 13, 367374.CrossRefGoogle Scholar
Moore, D.M., Robert, C. & Reynolds, J.R. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Nagy, B.S. & Bradley, W.F. (1955) The structural scheme of sepiolite (Utah). American Mineralogist, 40, 885892.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1129 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Serna, C., Van Scoyoc, G.E. & Ahlrichs, J.L. (1977) Hydroxyl groups and water in palygorskite. American Mineralogist, 62, 784792.Google Scholar
Suárez, M. & García-Romero, E. (2006a) Macroscopic palygorskite from Volcanic Complex of Lisbom. European Journal of Mineralogy, 18, 119126.CrossRefGoogle Scholar
Suárez, M. & García-Romero, E. (2006b) FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Applied Clay Science, 31, 154163.CrossRefGoogle Scholar