Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-15T13:23:10.402Z Has data issue: false hasContentIssue false

Effect of grinding and water vapour on the particle size of kaolinite and pyrophyllite

Published online by Cambridge University Press:  09 July 2018

E. T. Stepkowska
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092-Sevilla, Spain
J. L. Pérez–Rodríguez*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092-Sevilla, Spain
M. C. Jiménez de Haro
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092-Sevilla, Spain
P. J. Sánchez–Soto
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092-Sevilla, Spain
C. Maqueda
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC), Apdo. 1052, 41080-Sevilla, Spain
*

Abstract

The increase in specific surface of kaolinite (K) and pyrophyllite (P) induced by dry grinding in an oscillatory mill, proceeded during storage in water vapour. The average particle thickness, δ, changed from 42 nm (K) and 66 nm (P) in the original materials to 12 nm (K) and 20 nm (P) after water sorption (20 days at relative humidity RH = 1.0, at room temperature and pressure) and to similar values of 13 nm (K) and 16 nm (P) after grinding for 10 min (in agreement with some published data). The action of water molecules on ground clays (at the conditions indicated) resulted in a further decrease in δ. In pyrophyllite, prolonged grinding (30 min) and prolonged action of water molecules (36 days) caused a particle collapse. After pre-storing at RH = 0.5 the successive decrease in δ at RH = 1.0 was smaller.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J.F. & Giese, R.F. (1986) Energie de liason de feuillets de talc, pyrophyllite, muscovite et phlogopite. Clay Miner. 21, 159169.Google Scholar
Ben Rhaiem, H., Tessier, D. & Pons, C.H. (1986) Comportement hydrique et evolution structurale et texturale des montmorillonites au cours d’un cycle de dessication-humectation: I. Cas des montmorillonites calciques. Clay Miner. 21, 929.CrossRefGoogle Scholar
Čičel, B. & Kranz, G. (1981) Mechanism of montmorillonite structure degradation by percussive grinding. Clay Miner. 16, 151162.Google Scholar
González García, F., Ruiz Abrio, M.T. & González Rodríguez, M. (1991) Effects of dry grinding on two kaolins of different degrees of crystallinity. Clay Miner. 26, 549565.Google Scholar
Keeling, P.S., Kirby, E.C. & Robertson, R.H.S. (1980) Moisture adsorption and specific surface area. Trans. J. Br. Ceram. Soc. 79, 3640.Google Scholar
Kristóf, E., Juhász, A.Z. & Vassányi, I. (1993) The effect of mechanical treatment on the crystal structure and thermal behaviour of kaolinite. Clays Clay Miner., 41, 608612.Google Scholar
Martin, R.T. (1962) Adsorbed water on clays: A review. Clays Clay Miner. 9, 2870.CrossRefGoogle Scholar
Miller, J.G. & Oulton, T.D. (1970) Prototropy in kaolinite during percussive grinding. Clays Clay Miner. 18, 313323.Google Scholar
Nadeau, P.H. (1985) The physical dimensions of fundamental clay particles. Clay Miner. 20, 499514.Google Scholar
Pérez-Maqueda, L.A., Pérez-Rodríguez, J.L., Scheiffele, G.W., Justo, A. & Sánchez-Soto, P.J. (1993) Thermal analysis of ground kaolinite and pyrophyllite. J. Therm. Anal. 39, 10551067.Google Scholar
Pérez-Rodríguez, J.L. & Sánchez-Soto, P.J. (1991) The influence of dry grinding on the thermal behaviour of pyrophyllite. J. Therm. Anal. 37, 14011413.Google Scholar
Pérez-Rodríguez, J.L., Madrid Sánchez del Villar, L. & Sánchez-Soto, P.J. (1988) Effects of dry grinding on pyrophyllite. Clay Miner. 23, 399410.Google Scholar
Sánchez-Soto, P.J., Macias, M. & Pérez-Rodríguez, J.L. (1992) X-ray variance method to determine the crystallite size and lattice distortion of pyrophyllite after mechanical treatment. Trans. J. Br. Ceram. Soc. 91, 1519.Google Scholar
Sánchez-Soto, P.J., Macias, M. & Pérez-Rodríguez, J.L. (1993) Effects of mechanical treatment on X-ray diffraction line broadening in pyrophyllite. J. Am. Ceram. Soc. 76, 180184.Google Scholar
Sánchez-Soto, P.J., Pérez-Rodríguez, J.L., Sobrados, I. & Sanz, J. (1997a) Influence of grinding in pyrophyllite- mullite thermal transformation assessed by 29Si and 27Al MAS NMR spectroscopies. Chem. Mater. 9, 677684.Google Scholar
Sánchez-Soto, P.J., Wiewióra, A., Avilés, M.A., Justo, A., Pérez-Maqueda, L.A., Pérez-Rodríguez, J.L. & Bylina, P. (1997b) Talc from Puebla de Lillo Spain: II. Effect of dry grinding on particle size and shape. Appl. Clay Sci. 12, 297312.Google Scholar
Sposito, G. & Prost, R. (1982) Structure of water adsorbed on smectites. Chem. Rev. 82, 553573.Google Scholar
Stepkowska, E.T. (1990) Aspects of the clay/electrolyte/ water system with special reference to the geotechnical properties of clays. Eng. Geol. 28, 249267.CrossRefGoogle Scholar
Stepkowska, E.T. & Jefferis, S.A. (1982) The influence of microstructure on thermal changes in bentonite. 7th Int. Conf. Thermal Analysis, Kingston, Ontario.Google Scholar
Stepkowska, E.T. & Jefferis, S.A. (1987) Variability in water sorption and in thermogravimetry of bentonite. Thermochim. Acta, 114, 179186.Google Scholar
Stepkowska, E.T., Pérez-Rodríguez, J.L., Justo, A., Sánchez-Soto, P.J. & Maqueda, C. (1993) Variations in thermogravimetry of standard clay samples induced by pretreatment. 10th Int. Clay Conf., Adelaide. ‘93, Abstracts.Google Scholar
Suraj, G., Iyer, C.S.P., Rugmini, S. & Lalithambika, M. (1997) The effect of micronization on kaolinites and their sorption behaviour. Appl. Clay Sci. 12, 111130.CrossRefGoogle Scholar
van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and Other non-metallic Minerals. Pergamon Press.Google Scholar
Wiewióra, A., Sánchez-Soto, P.J., Avilés, M.A., Justo, A. & Pérez-Rodríguez, J.L. (1993) Effect of dry grinding and leaching on polytypic structure of pyrophyllite. Appl. Clay Sci. 8, 261282.Google Scholar