Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T11:04:27.365Z Has data issue: false hasContentIssue false

Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste

Published online by Cambridge University Press:  02 January 2018

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
R. Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of today's big challenges is to store safely the increasing amount of high-level radioactive waste (HLRW) in the world. In some of the concepts devised for this challenge, bentonite, a natural swelling clay, plays a key role in encasing the canisters containing the waste. The use of bentonite as a geotechnical barrier in HLRWrepositories is a new venture; specifications to ensure either optimum performance or that a minimum standard is reached at least do not exist yet. The present study summarizes relevant research and discusses possible HLRW-bentonite specifications. The importance of these specifications for any given repositories has to be assessed on a case by case basis, depending on the concept being employed and any special circumstances for the individual repositories.

Ten key issues were identified which were used to discuss bentonite specifications. In some of these key issues the optimum bentonite performance depended more on processing and production (compaction) than on the bentonite type (e.g. swelling pressure and thermal conductivity). In contrast, in some of the other key issues, the type of bentonite was found to influence possible specifications: the bentonite should not alter its mineral composition or its geotechnical parameters such as the swellability. Therefore, the bentonite should contain neither soluble nor reactive phases (e.g. organic matter, pyrite, gypsum). The structural Fe content of the smectites should be small because of the lesser stability and greater reactivity of the Fe-rich bentonites. Also, a large layer-charge density of the swelling clay minerals leads to less corrosion at the iron–bentonite interface (relevant if iron canisters are used). The hydraulic conductivity and swelling pressure can be tailored by compaction of the bentonite resulting in different dry densities. From an engineering point of view, a bentonite with least dependence of the hydraulic conductivity/swelling pressure on the dry density would be best. Using a bentonite which has been investigated extensively over many years means less uncertainty compared to unknown materials.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Agus, S.S. & Schanz, T. (2008) An alternative method for predicting swelling pressure of compacted bentonites. Acta Geotechnica, 3, 125137.10.1007/s11440-008-0057-0Google Scholar
Bachmaf, S., Planer-Friedrich, B. & Merkel, B.J. (2008) Uranium sorption and desorption behavior on bentonite. Pp. 515-524 in: Uranium, Mining and Hydrogeology (B.J. Merkel & A. Hasche-Berger, editors). Springer, Berlin, DOI: 10.1007/978-3-540-87746-2_63.Google Scholar
Basuki, K.T. & Muzakky, M. (2010) Adsorption of Am-241, Cs-137 and Sr-90 radionuclides with bentonite-humic acid immobilized yield. Indonesian Journal of Chemistry, 10, 17.10.22146/ijc.21472Google Scholar
Bauer, A. & Velde, B. (1999) Smectite transformation in high molar KOH solutions. Clay Minerals, 34, 259273.10.1180/000985599546226Google Scholar
Bauer, A., Lanson, B., Ferrage, E., Emmerich, K., Taubald, H., Schild, D. & Velde, B. (2006) The fate of smectite in KOH solutions. American Mineralogist, 91, 13131322.10.2138/am.2006.2151Google Scholar
Berner, U.R. (1992) Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Management, 12, 201219.10.1016/0956-053X(92)90049-OGoogle Scholar
Birgersson, M., Borgesson, L., Hedström, M., Karnland, O. & Nilsson, U. (2009) Bentonite erosion. SKB technical report, TR 09-34, Svensk Kärnbränslehantering AB, Stockholm. Available online at: http://www.skb.se/upload/publications/pdf/TR-09-34.pdf Google Scholar
Börgesson, L. & Hernelind, J. (2010) Earth quake induced rock shear through a deposition hole — modelling of three model tests scales 1:10. SKB-TR-10-33, Svensk Kärnbränslehantering AB, Stockholm.Google Scholar
Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 5570.Google Scholar
Bors, J., Dultz, S. & Riebe, B. (2000) Retention of radionuclides by organophilic bentonite. Engineering Geology, 54, 195206.10.1016/S0013-7952(99)00074-5CrossRefGoogle Scholar
Carlson, L., Karnland, O., Oversby, Y.M., Ranee, A.P., Smart, N.R., Snellman, M., Vahanen, M. & Werme, L.O. (2007) Experimental studies of the interactions between anaerobically corroding iron and bentonite. Physics and Chemistry of the Earth, 32, 334345.10.1016/j.pce.2005.12.009CrossRefGoogle Scholar
Clauser, C. & Huenges, E. (1995) Thermal conductivity of rocks and minerals. Pp. 105126 in: Rock Physics and Phase Relations — a Handbook of Physical Constants (T.J. Ahrens, editor). AGU Reference Shelf, Vol. 3, American Geophysical Union, Washington DC.CrossRefGoogle Scholar
Cuevas, J., Fernandez, R., Sanchez, L., Vigil de la Villa, R., Rodriguez, M. & Leguey, S. (2007) Reactive diffusion front driven by an alkaline plume in compacted Mghomoionic bentonite. ANDRA Conference: Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, International Meeting Lille 2007, available online at: http://www.andra.fr/lille2007/abstract_lille2007/donnees/pdf/509_510_P_MTPM_44.pdf Google Scholar
Dejun, L., Xianhua, F., Yingjie, Z., Jun, Y., Duo, Z. & Yong, W. (2004) Adsorption behavior of 99Tc in Ca-bentonite. Chinese Journal of Nuclear Science and Engineering, 24, 144151.Google Scholar
Dohrmann, R., Kaufhold, S. & Lundqvist, B. (2013a) The role of clays for safe storage of nuclear waste. Pp. 677-710 in: Handbook of Clay Science: Techniques and Applications (F. Bergaya and, G. Lagaly, editors). Developments in Clay Science, Vol. 5B, Elsevier, Amsterdam.Google Scholar
Dohrmann, R., Olsson, S., Kaufhold, S. & Sellin, P. (2013b) Mineralogical investigations of the first package of the alternative buffer material test — II. Exchangeable cation population rearrangement. Clay Minerals, 48, 215233.10.1180/claymin.2013.048.2.05CrossRefGoogle Scholar
Dueck, A., Börgesson, L. & Johannesson, L.-E. (2010) Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique. SKB TR-10-32.Google Scholar
Dultz, S. & Bors, J. (2005) Organophilic bentonites as adsorbents for radionuclides. II. Chemical and min-eralogical properties of HDPy montmorillonite. Applied Clay Science, 16, 1529.10.1016/S0169-1317(99)00042-3Google Scholar
Eberl, D.D., Srodoii, J. & Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296-326 in: Geochemical Processes at Mineral Surfaces (J.A. Davis & K.F. Hayes, editors). ACS Symposium Series, 323, American Chemical Society.Google Scholar
Eberl, D.D., Velde, B. & McCormick, T. (1993) Synthesis of illite—smectite from smectite at earth surface temperatures and high pH. Clay Minerals, 28, 4960.10.1180/claymin.1993.028.1.06Google Scholar
Fernández, R., Rodríguez, M., Vigil de la Villa, R. & Cuevas, J. (2010) Geochemical constraints on the stability of zeolites and C-S-H in the high pH reaction of bentonite. Geochimica et Cosmochimica Acta, 74, 890906.10.1016/j.gca.2009.10.042CrossRefGoogle Scholar
Fourdrin, C., Allard, T., Monnet, I., Menguy, N., Benedetti, M. & Calas, A. (2010) Effect of radiation-induced amorphization on smectite dissolution. Environmental Science and Technology, 44, 25092514.10.1021/es903300rCrossRefGoogle ScholarPubMed
Fries, T., Claudel, A., Weber, H., Johnson, L. & Leupin, O. (2008) The Swiss concept for the disposal of spent fuel and vitrified HLW International Conference Underground Disposal Unit Design & Emplacement Processes for a Deep Geological Repository, 16-18 June 2008, Prague, available online at: http://library.sinap.ac.cn/db/fangshexing201103/%E5%85%A8%E6%96%87/41025019.pdf. Google Scholar
Fru, E.C. & Athar, R. (2008) In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository conditions. Applied Microbiology and Biotechnology, 79, 499510.10.1007/s00253-008-1436-zGoogle Scholar
Greene-Kelly, K. (1953) Irreversible dehydration in montmorillonite, part II. Clay Minerals Bulletin, 2, 5256.10.1180/claymin.1953.002.9.09CrossRefGoogle Scholar
Hatem, M., Pusch, R., Warr, L. & Kasbohm, J. (2015) Interaction of clay and concrete relevant to the deep disposal of high-level radioactive waste. Applied Clay Science, 118, 178187.Google Scholar
Hökmark, H. (2002) Hydration of the bentonite buffer in a KSB-3 repository. ANDRA: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. International Meeting, Reims.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für Anorganische Chemie, 262, 9599.10.1002/zaac.19502620114Google Scholar
Honty, M., Uhlík, P., Šucha, V., Caploviçová, M., Francu, J., Clauer, N. & Biron, A. (2004) Smectite-to-illite alteration in salt-bearing bentonites (the East Slovak basin). Clays and Clay Minerals, 52, 533551.10.1346/CCMN.2004.0520502CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. Jr. (1976) Mechanism of burial metamorphism of argillaceous sediment, I. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2Google Scholar
Jobmann, M. & Buntebarth, G. (2009) Influence of graphite and quartz addition on the thermo-physical properties of bentonite for sealing heat-generating radioactive waste. Applied Clay Science, 44, 206210.10.1016/j.clay.2009.01.016Google Scholar
Karnland, O., Olsson, S. & Nilsson, U. (2006) Mineralogy and sealing properties of various bentonites and smectite-rich clay materials. SKB technical report, TR 06-30. Available online at: http://www.skb.se/upload/publications/pdf/TR-06-30.pdf Google Scholar
Karnland, O., Olsson, S., Dueck, A., Birgersson, M., Nilsson, U., Hernan-Håkansson, T., Pedersen, K., Nilsson, S., Eriksen, T.E. & Rosborg, B. (2009) Long term test of buffer material at the Äspö Hard Rock Laboratory, LOT project - Final report on the A2 test parcel, Technical Report TR-09-29. Available online at: http://www.skb.se/upload/publications/pdf/TR-09-29.pdf Google Scholar
Kaufhold, S. & Dohrmann, R. (2008) Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 5059.10.1016/j.clay.2007.04.008CrossRefGoogle Scholar
Kaufhold, S. & Dohrmann, R. (2009) Stability of bentonites in salt solutions. I. Sodium chloride. Applied Clay Science, 45, 171177.10.1016/j.clay.2009.04.011Google Scholar
Kaufhold, S. & Dohrmann, R. (2010a) Effect of extensive drying on the cation exchange capacity of bentonites. Clay Minerals, 45, 44148.10.1180/claymin.2010.045.4.441Google Scholar
Kaufhold, S. & Dohrmann, R. (2010b) Stability of bentonites in salt solutions. II. Potassium chloride solution — Initial step of illitization. Applied Clay Science, 49, 98107.10.1016/j.clay.2010.04.009Google Scholar
Kaufhold, S. & Dohrmann, R. (2011) Stability of bentonites in salt solutions. III. Ca-hydroxide solu-tions. Applied Clay Science, 51, 300307.10.1016/j.clay.2010.12.004Google Scholar
Kaufhold, S., Pohlmann-Lortz, M., Dohrmann, R. & Nüesch, R. (2007) About the possible upgrade of bentonite with respect to iodide retention capacity. Applied Clay Science, 35, 396.10.1016/j.clay.2006.08.001Google Scholar
Kaufhold, S., Dohrmann, R., Koch, D. & Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338343.10.1346/CCMN.2008.0560304Google Scholar
Kaufhold, S., Dohrmann, R., Sandén, T., Sellin, P. & Svensson, D. (2013) Mineralogical investigations of the alternative buffer material test - I. Alteration of bentonites. Clay Minerals, 48, 199213.10.1180/claymin.2013.048.2.04Google Scholar
Kaufhold, S., Sanders, D., Dohrmann, R. & Hassel, A.-W. (2015a) Fe corrosion in contact with bentonites. Journal of Hazardous Materials, 285, 464473.10.1016/j.jhazmat.2014.10.056CrossRefGoogle Scholar
Kaufhold, S., Baille, W., Schanz, T. & Dohrmann, R. (2015b) About differences of swelling pressure-dry density relations of compacted bentonites. Applied Clay Science, 107, 5261.10.1016/j.clay.2015.02.002Google Scholar
Khalili, F.I., Salameh, N.H. & Shaybe, M.M. (2013) Sorption of uranium(VI) and thorium(IV) by Jordanian bentonite. Journal of Chemistry, Article ID 586136, 13 pp. http://dx.doi.org/10.1155/2013/586136 Google Scholar
Kerisit, S., Okumura, M., Rosso, K.M. & Machida, M. (2016) Molecular simulation of cesium adsorption at the basal surface of phy llo silicate minerals. Clays and Clay Minerals, in press. DOI: 10.1346/ CCMN.2016.0640405.Google Scholar
Knutsson, S. (1983) On the thermal conductivity and thermal diffusivity of highly compacted bentonite. SKBF Technical KBS Report 83-72. SKB, Stockholm. Available online at: http://www.skb.se/upload/publications/pdf/TR83-72webb.pdf Google Scholar
Komine, H. (2004) Simplified evaluation for swelling characteristics of bentonites. Engineering Geology, 71, 265279.10.1016/S0013-7952(03)00140-6Google Scholar
Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M. & Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597612.10.1346/CCMN.2005.0530606Google Scholar
Lee, J.O., Cho, W.J., Kang, C.H. & Chun, K.S. (1999) Swelling and hydraulic properties of Ca-bentonite for the buffer of a waste repository. The International Symposium on Technologies for the Management of Radioactive Waste from Nuclear Power Plants and Back End Nuclear Fuel Cycle Activities, September 1999, available online at: http://www-pub.iaea.org/MTCD/publications/PDF/csp_006c/PDF-Files/paper-68.pdf Google Scholar
Majdan, M., Pikus, S., Gajowiak, A., Sternik, D. & Zieba, E. (2010) Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. Journal of Hazardous Materials, 184, 662670.10.1016/j.jhazmat.2010.08.089CrossRefGoogle ScholarPubMed
Mayordomo, N., Degueldre, C. Alonso, U. & Missana, T. (2016) Size distribution of FEBEX bentonite colloids upon fast disaggregation in low ionic strength water. Clay Minerals, 51, 213222.10.1180/claymin.2016.051.2.08Google Scholar
Missana, T., Garcia-Gutiérrez, M. & Alonso, U. (2002) Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids. ANDRA: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, 2002, Program and Abstracts.Google Scholar
Missana, T., Alonso, U. & Turrero, M.J. (2003) Generation and stability of bentonite colloids at the bentonite/ granite interface of a deep geological radioactive waste repository. Journal of Contaminant Hydrology, 61, 1731.10.1016/S0169-7722(02)00110-9Google Scholar
Meunier, A. & Velde, B. (2004) Illite: Origins, Evolution, and Metamorphism. Springer, Berlin, 286 pp.10.1007/978-3-662-07850-1Google Scholar
Mosser-Ruck, R., Pironon, J., Cathelineau, M. & Trouiller, A. (2001) Experimental illitization of smectite in a K-rich solution. European Journal of Mineralogy, 13, 829840.10.1127/0935-1221/2001/0013/0829Google Scholar
NAGRA (1995) Column experiments: results of experiments and modelling. NAGRA NTB, Report 95-70, Baden, Switzerland.Google Scholar
Omar, H., Arida, H. & Daifullah, A. (2009) Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Applied Clay Science, 44, 2126.10.1016/j.clay.2008.12.013Google Scholar
Osacký, M., Šucha, V.A., Czímerová, A. & Madejová J. (2010) Reaction of smectites with iron in a nitrogen atmosphere at 75°C. Applied Clay Science, 50, 237244.10.1016/j.clay.2010.08.004Google Scholar
Oscarson, D.W., Miller, H.G. & Watson, R.L. (1986) An evaluation of potential additives to a clay-based buffer material for the immobilization of I-129. AECL Report 9068. Atomic Energy of Canada Limited, Pinawa, Canada, 24 pp.Google Scholar
Pacovsky, J., Svoboda, J. & Zapletal, L. (2007) Saturation development in the bentonite barrier of the mock-up-CZ geotechnical experiment. Physics and Chemistry of the Earth, 32, 767779.10.1016/j.pce.2006.03.005CrossRefGoogle Scholar
Perronnet, M., Villiéras, F., Jullien, M., Razafitianamaharavo, A., Raynal, J. & Bonnin, D. (2007) Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion. Geochimica et Cosmochimica Acta, 71, 14631479.10.1016/j.gca.2006.12.011Google Scholar
Plötze, M. & Kahr, G. (2002) Alteration of clay mineralsirradiation effects on physicochemical properties. Workshop on Clay micro structure and its importance to soil behaviour, SKB, Lund.Google Scholar
Plötze, M., Kahr, G. & Stengele, R.H. (2003) Alteration of clay minerals — gamma-irradiation effects on physico-chemical properties. Applied Clay Science, 23, 195202.10.1016/S0169-1317(03)00103-0Google Scholar
Plötze, M., Schärli, U., Koch, A. & Weber, H. (2007) Thermophysical properties of compacted bentonite. Clays in Natural & Engineered Barriers for radioactive waste confinement. International meeting, ANDRA, Lille, France.Google Scholar
Pusch, R. (1999) Clay colloid formation and release from MX-80 buffer. SKB Technical Report No: TR-99-31, Stockholm.Google Scholar
Pusch, R., Karnland, O., Lajudie, A. & Decarreau, A. (1993) MX-80 exposed to high temperatures and gamma radiation. SKB-TR 93-03, Stockholm.Google Scholar
Pusch, R., Börgesson, L., Fredriksson, A., Johannesson, L.-E., Hökmark, H., Karnland, O. & Sandén T (1995) The Buffer and Backfill Handbook. Technical Report 95-45, SKB, Clay Technology AB, Sweden.Google Scholar
Pusch, R., Kasbohm, J. & Thao, H.T.M. (2010) Chemical stability of montmorillonite buffer clay under repository-like conditions — A synthesis of relevant experimental data. Applied Clay Science, 47, 113119.10.1016/j.clay.2009.01.002Google Scholar
Ramirez, S., Cuevas, J., Vigil, R. & Leguey, S. (2002) Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions. Applied Clay Science, 21, 257269.10.1016/S0169-1317(02)00087-XGoogle Scholar
Riebe, B., Dultz, S. & Bunnenberg, C. (2005) Temperature effects on iodine adsorption on organo-clay minerals. I. Influence of pretreatment and adsorption temperature. Applied Clay Science, 28, 916.10.1016/j.clay.2004.01.004Google Scholar
Savage, D., Benbow, S., Watson, C., Takase, H., Ono, K., Oda, C. & Honda, A. (2010) Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California. Applied Clay Science, 47, 7281.10.1016/j.clay.2009.08.024Google Scholar
Sellin, P. & Leupin, O. (2014) The use of clay as an engineered barrier in radioactive waste management — a review. Clays and Clay Minerals, 61, 477498.10.1346/CCMN.2013.0610601Google Scholar
Schärli, U., Plötze, M. & Kahr, G. (2004) Thermische Messungen an Bentonit. Berichte der DTTG, 10, 80 pp.Google Scholar
Seliman, A.F., Lasheen, Y.F., Youssief, M.A.E., Abo-Aly, M.M. & Shehata, F.A. (2014) Removal of some radionuclides from contaminated solution using natural clay: bentonite. Journal of Radioanalytical and Nuclear Chemistry, 300, 969979.10.1007/s10967-014-3027-zGoogle Scholar
Simsek, S. & Ulusoy, U. (2012) Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. Journal of Radioanalytical and Nuclear Chemistry, 292, 4151.10.1007/s10967-011-1415-1Google Scholar
SKB (2010) Design and production of the KBS-3 repository. Technical report TR-10-12, Svensk Kärnbränslehantering AB, Stockholm, available online at: http://www.skb.se/upload/publications/pdf/TR-10-12.pdf Google Scholar
Sorieul, S., Allard, Th., Boizot, B., Chaumont, J. & Calas, G. (2002) Ionization-Radiation effects in montmorillonite. ANDRA: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. International Meeting, Reims, Frances.Google Scholar
Sorieul, S., Allard, Th., Wang, L.M., Gramblin-Lapeyre, C., Lian, J., Calas, G. & Ewing, R.C. (2008) Radiation-stability of smectite. Environmental Science & Technology, 42, 84078411.10.1021/es800766bGoogle Scholar
Suquet, H., de la Calle, C. & Pezzerat, H. (1975) Swelling and structural organization of saponite. Clays and Clay Minerals, 23, 19.10.1346/CCMN.1975.0230101Google Scholar
Suzuki, S., Sazarashi, M., Akimoto, T., Haginuma, M. & Suzuki, K. (2008) A study of the mineralogical alteration of bentonites in saline water. Applied Clay Science, 41, 190198.10.1016/j.clay.2007.11.003Google Scholar
Svoboda, J. (2013) The experimental study of bentonite swelling into fissures. Clay Minerals, 48, 383389.10.1180/claymin.2013.048.2.16Google Scholar
Tournassat, C., Bourg, I.C., Holmboe, M., Sposito, G. & Steefel, C.I. (2016) Molecular dynamics simulations of anion exclusion in clay interlayer nanopores. Clays and Clay Minerals, in press. DOI: 10.1346/ CCMN.2016.0640403.Google Scholar
van Geet, M. & Dohrmann, R. (2016) Overview of the clay mineralogy studies presented at the ‘Clays in natural and engineered barriers for radioactive waste confinement’ meeting, Brussels. Clay Minerals, 51, 125128.10.1180/claymin.2016.051.2.01Google Scholar
Vašíeek, R. (2007) Mock-up-CZExperiment. CTU Prague, Faculty of Civil Engineering, http://ceg.fsv.cvut.cz/EN/ceg-downloads Google Scholar
Villar, M.V. (2002) Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata: A study applied to the use ofbentonite as a sealing material in high level radioactive waste repositories. PhD thesis, Universidad Complutense de Madrid, Facultad de Ciencias Geológicas, Departamento de Geodinámica. ENRESA Publicación técnica 04/2002. ISSN: 1134-380X, Spain.Google Scholar
Wilson, J., Savage, D., Cuadros, J., Shibata, M. & Ragnarsdottir, K.V. (2006a) The effect of iron on montmorillonite stability. (I) Background and thermo-dynamic considerations. Geochimica et Cosmochimica Acta, 70, 306322.10.1016/j.gca.2005.10.003Google Scholar
Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D. & Shibata, M. (2006b) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70, 323336.10.1016/j.gca.2005.09.023Google Scholar
Xia, X., Idemitsu, K., Arima, T., Inagaki, Y., Ishidera, T., Kurosawa, S., Iijima, K. & Sato, H. (2005) Corrosion of carbon steel in compacted bentonite and its effect. Applied Clay Science, 28, 89100.10.1016/j.clay.2004.01.002Google Scholar