Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T21:32:34.406Z Has data issue: false hasContentIssue false

Diffusion and retention behaviour of Cs in illite-added compacted montmorillonite

Published online by Cambridge University Press:  02 January 2018

Takamitsu Ishidera*
Affiliation:
Japan Atomic Energy Agency (JAEA), 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1194, Japan
Seiichi Kurosawa
Affiliation:
Inspection Development Corporation, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1112, Japan
Masanori Hayashi
Affiliation:
Inspection Development Corporation, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1112, Japan
Keiji Uchikoshi
Affiliation:
Inspection Development Corporation, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1112, Japan
Hikari Beppu
Affiliation:
Inspection Development Corporation, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1112, Japan
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Compacted bentonite is to be used as a component of an engineered barrier system to retard the migration of radionuclides in the geological disposal of radioactive waste. In such an environment, montmorillonite in compacted bentonite might be altered to illite due to the hydrothermal reactions caused by the decay heat of radionuclides. In the present study, the diffusion and retention behaviour of Cs in compacted montmorillonite containing illitewas investigated using through-diffusion experiments. The experimental results showed that the flux of Cs attributed to the surface diffusion was independent of the sorption of Cs on illite, indicating that the Cs sorbed on illite was immobile or considerably less mobile than the Cs sorbed on montmorillonite. Consequently, the illite content in compacted bentonite is expected to enhance the sorption capacity of Cs without causing surface diffusion.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Aertsens, M., Govaerts, J., Maes, N. & Van Laer, L. (2012) Consistency of the strontium transport parameters in Boom Clay obtained from different types of experiments: accounting for the filter plates. Materials Research Society Symposium Proceedings, 1475, 583588.10.1557/opl.2012.636CrossRefGoogle Scholar
Ahn, J.H., Nagasaki, S., Tanaka, S. & Suzuki, A. (1995) Effects of smectite illitization on transport of actinides through engineered barriers of HLW repository. Materials Research Society Symposium Proceedings, 353, 231238.10.1557/PROC-353-231Google Scholar
Bradbury, M.H. & Baeyens, B. (2000) A generalised sorption model for the concentration-dependent uptake of caesium by argillaceous rocks. Journal of Contaminant Hydrology, 42, 141163.10.1016/S0169-7722(99)00094-7Google Scholar
Glaus, M.A., Rossé, R., Van Loon, L.R. & Yaroshchuk, A.E. (2008) Tracer diffusion in sintered stainless steel filters: measurement of effective diffusion coefficients and implications for diffusion studies with compacted clays. Clays and Clay Minerals, 56, 677685.10.1346/CCMN.2008.0560608CrossRefGoogle Scholar
Glaus, M.A., Frick, S., Rossé, R. & Van Loon, L.R. (2010) Comparative study of tracer diffusion of HTO, 22Na+ and 36Cr in compacted kaolinite, illite and montmorillonite. Geochimica et Cosmochimica Acta, 74, 19992010.10.1016/j.gca.2010.01.010Google Scholar
Glaus, M.A., Frick, S., Rossé R. & Van Loon, L.R. (2011) Consistent interpretation of the results of through-, out-diffusion and tracer profile analysis for trace anion diffusion in compacted montmorillonite. Journal of Contaminant Hydrology, 123, 110.10.1016/j.jconhyd.2010.11.009Google Scholar
Glaus, M.A., Aertsens, M., Appelo, C.A.J., Kupcik, T., Maes, N., Van Laer, L. & Van Loon, L.R. (2015a) Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochimica et Cosmochimica Acta, 165, 376—388.10.1016/j.gca.2015.06.014CrossRefGoogle Scholar
Glaus, M.A., Aertsens, M., Maes, N., Van Laer, L. & Van Loon, L.R. (2015b) Treatment of boundary conditions in through-diffusion: A case study of 85Sr2+ diffusion in compacted illite. Journal of Contaminant Hydrology, 177-178, 239248.10.1016/j.jconhyd.2015.03.010Google Scholar
Ito, M., Okamoto, M. & Shibata, M. et al. (1993) Mineral composition analysis of bentonite, PNC TN8430 93-003, Japan Nuclear Cycle Development Institute [in Japanese].Google Scholar
Japan Nuclear Cycle Development Institute (JNC) (2000) H1 2: Project to establish the technical basis for HLW disposal in Japan, Supporting report 3, Safety assessment of the geological system, JNC TN1 410 2000-004.Google Scholar
Kim, H., Suk, T., Park, S. & Lee, C. (1993) Diffusivities for ions through compacted Na-bentonite with varying dry bulk density. Waste Management, 13, 303308.10.1016/0956-053X(93)90058-5Google Scholar
Melkior, T., Yahiaoui, S., Motellier, S., Thoby, D. & Tevissen, E. (2005) Cesium sorption and diffusion in Bure mudrock samples. Applied Clay Science, 29, 172186.10.1016/j.clay.2004.12.008Google Scholar
Molera, M. & Eriksen, T. (2002) Diffusion of 22Na+, 85Sr2+ 134Cs+ and 57Co2+ in bentonite clay compacted to different densities: experiments and modeling. Radiochimica Acta, 90, 753760.10.1524/ract.2002.90.9-11_2002.753Google Scholar
Muurinen, A., Rantanen, J. & Penttilä-Hiltunen, P. (1985) Diffusion mechanisms of strontium, cesium and cobalt in compacted sodium bentonite. Materials Research Society Symposium Proceedings, 50, 617624.10.1557/PROC-50-617Google Scholar
NAGRA (2002) Project Opalinus Clay: Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis), NTB 02-05.Google Scholar
Ohnuki, T., Murakami, T., Sato, T. & Isobe, H. (1994) Redistribution of strontium and cesium during alteration of smectite to illite. Radiochimica Acta, 66/67, 323326.Google Scholar
Oscarson, D.W., Hume, H.B. & King, F. (1994) Sorption of cesium on compacted bentonite. Clays and Clay Minerals, 42, 731736.10.1346/CCMN.1994.0420609Google Scholar
Poinssot, C., Baeyens, B. & Bradbury, M. (1999) Experimental and modelling studies of caesium sorption on illite. Geochimica et Cosmochimica Acta, 63, 32173227.10.1016/S0016-7037(99)00246-XGoogle Scholar
Sato, H., Ashida, T., Kohara, Y., Yui, M. & Sasaki, N. (1992) Effect of dry density on diffusion of some radio-nuclides in compacted sodium bentonite. Journal of Nuclear Science and Technology, 29, 873882.10.1080/18811248.1992.9731607CrossRefGoogle Scholar
Sawhney, B.L. (1971) Selective sorption and fixation of cations by clay minerals: A review. Clays and Clay Minerals, 20, 93100.10.1346/CCMN.1972.0200208Google Scholar
Sawaguchi, T., Yamaguchi, T., Iida, Y., Tanaka, T. & Kitagawa, I. (2013) Diffusion of Cs, Np, Am and Co in compacted sand-bentonite mixtures: evidence for surface diffusion of Cs cations. Clay Minerals, 48, 41122.10.1180/claymin.2013.048.2.19CrossRefGoogle Scholar
SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project, SKB TR-11-01.Google Scholar
Suzuki, S., Sato, H., Ishidera, T. & Fujii, N. (2004) Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite. Journal of Contaminant Hydrology, 68, 2337.10.1016/S0169-7722(03)00139-6CrossRefGoogle Scholar
Suzuki, S., Haginuma, M. & Suzuki, K. (2007) Study of sorption and diffusion of 137Cs in compacted bentonite saturated with saline water at 60°C. Journal of Nuclear Science and Technology, 44, 8189.10.1080/18811248.2007.9711259Google Scholar
Van Loon, L.R., Wersin, P., Soler, J.M., Gimmi, Th., Hernán, P., Dewonck, S. & Savoye, S. (2004) In-situ diffusion of HTO, 22Na+, Cs+ and I” in Opalinus Clay at the Mont Terri underground rock laboratory. Radiochimica Acta, 92, 757763.10.1524/ract.92.9.757.54988CrossRefGoogle Scholar
Wanner, H., Albinsson, Y. & Wieland, E. (1996) A thermodynamic surface model for caesium sorption on bentonite. Fresenius Journal of Analytical Chemistry, 354, 763769.Google Scholar
Wersin, P., Soler, J.M., Van Loon, L., Eikenberg, J., Baeyens, B., Grolimund, D., Gimmi, T. & Dewonck, S. (2008) Diffusion of HTO, Br” T, Cs+, 85Sr2+ and 60Co2+ in a clay formation: Results and modelling from an in situ experiment in Opalinus Clay. Applied Geochemistry, 23, 678691.10.1016/j.apgeochem.2007.11.004Google Scholar