Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T13:17:16.577Z Has data issue: false hasContentIssue false

Diagenesis-very low-grade metamorphism of clastic Cambrian and Ordovician sedimentary rocks in the Iberian Range (Spain)

Published online by Cambridge University Press:  09 July 2018

B. Bauluz
Affiliation:
Area de Cristalografia y Mineralogia. Dpto. Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
C. Fernandez-Nieto
Affiliation:
Area de Cristalografia y Mineralogia. Dpto. Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
J. M. Gonzalez Lopez
Affiliation:
Area de Cristalografia y Mineralogia. Dpto. Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain

Abstract

Cambrian and Ordovician pelites and greywakes from the Iberian Range were studied using XRD, EMPA and AEM/TEM techniques, lllite and chlorite are the main phases in Cambrian <2 µm fractions. Illites show crystallinities (IC) from 0.28 to 0.23°2θ the 2M1 is almost the only polytype; they do not have expandable layers, and they are heterogeneous in composition. Chlorites show two compositional types, both containing variable proportions of smectite-like layers. Clinochtores growing over bedding surfaces are also present. An evolutionary trend from anchizone to near the anchizone-epizone limit has been proposed for Cambrian samples.

In the Ordovician <2 µm fractions, illites are associated with minor chlorites and kaolinites. The ICs range from 0.68-0.28°2θ the 2M1 polytype dominates over 1M, and it is associated with illitesmectite mixed-layering (R3 ordering). An evolutionary trend from diagenesis to low grade anchizone has been inferred.

Chemical analyses of coarser detrital micas indicate muscovite and phengite compositions. The compositional heterogeneity exhibited by authigenic and detrital phases suggests that chemical equilibrium was not attained.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-toillite transition. Clays Clay Miner. 2, 165179.Google Scholar
Albee, A. (1962) Relation between mineral association, chemical composition and physical properties of the chlorite series. Am. Miner. 47, 851870.Google Scholar
Alvaro, J.J., Gozalo, R., Liñan, E. & Sdzuy, K. (1993) The palaeogeography of the northern Iberia at the Lower-Middle Cambrian transition. Bull. Soc. geol. France, 164, 843850.Google Scholar
Alvaro, J.J., Liñan, E., Vennin, E. & Gozalo, R. (1995) Palaeogeographical evolution within a passive margin with syndepositional faulting. The Marianian deposits (Lower Cambrian) of the Iberian Chains (NE Spain). N. ,lb. Geol. Paläont. M. H. H.9, 521540.Google Scholar
Aragones, E., Hernñndez, A., Aguilar, M.J. & Ramirez, J. (1981) Memoria del mapa geol. España. E. 1: 50.000, hoja n° 409 (Calatayud), IGME, pp. 44.Google Scholar
Bailey, S.W. (1980) Summary of recommendations of AIPEA Nomenclature Committee. Clay Miner'. 15, 8593.CrossRefGoogle Scholar
Bailey, S.W. (1984) Structures of layer silicates. Pp. 1 – 123 in: Crystal Structures of Clay MineraLs” and their X-ray ldenti/ication. (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Bettison, L.A. & Schiffman, P. (1988) Compositional and structural variations of phyllosilicates from the Point Salt ophiolite, California. Am. Miner. 73, 62–76.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and ocean. Geol. Soc. Am. Bull 76, 803832.CrossRefGoogle Scholar
Blenkinsop, T.G. (1988) Definition of low-grade metamorphic zones using illite crystallinity. J. Met. Geol. 6, 623636.CrossRefGoogle Scholar
Bodine, M.W. & Madsen, B.M. (1987) Mixed-layer chlorite-smectite from a Pennsylvanian evaporite cycle, Grand Country, Utah. Proc. Int. Clay Conf, Denver, 85-93.Google Scholar
Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. 21 Sed. Pet. 49, 5570.Google Scholar
Bradley, W.F. & Weaver, C.E. (1956) A regularly interstratified chlorite-vermiculite clay mineral. Am. Miner. 41, 497504.Google Scholar
Brindley, G.W. (1961) Chlorite minerals. Pp. 242-296 in: The X-ray Ident∼/ication and Crystal Structures of Clay Minerals (Brown, G., editor). Mineralogical Society, Lofidon.Google Scholar
Caillère, S., Henin, S. & Rautureau, M. (1982) Mineralogie des argiles. Act. Sci. Agr. de L'I.N.R.A. 8. Masson, Paris.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23, 471485.CrossRefGoogle Scholar
Cathelineau, M. & Nieva, D. (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Pet. 91, 235244.CrossRefGoogle Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays Clay Miner. 34, 407423.CrossRefGoogle Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag.CrossRefGoogle Scholar
Craw, D. & Jamieson, R.A. (1984) Anomalous optics in low-grade chlorite from Atlantic Canada. Can. Miner. 22, 269280.Google Scholar
De Caritat, P., Hutcheon, I. & Walshe, J.L. (1993) Chlorite geothermometry: a review. Clays Clay Miner. 41, 219239.CrossRefGoogle Scholar
Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry – a critical perspective. Clays Clay Miner. 43, 540553.CrossRefGoogle Scholar
Franceschelli, M., Mellini, M., Memmi, I. & Ricci, C.A. (1986) Fine-scale chlorite-muscovite association in low-grade metapelites from Nurr (NW Sardinia), and the possible misidentification of metamorphic vermiculite. Contrib. Mineral. Pet. 93, 137143.CrossRefGoogle Scholar
Freed, R.L. & Peacor, D.R. (1989) Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Miner. 24, 171180.CrossRefGoogle Scholar
Frey, M. (1987) Low Temperature Metamorphism. Blackie, Glasgow.Google Scholar
Guidotti, C.V. & Sassi, F.P. (1976) Muscovite as petrogenetic Indicator Mineral in pelitic schists. N. Jb. Miner. Abh. 127, 2, 97142.Google Scholar
Hayes, J.B. (1970) Polytypism of chlorite in sedimentary rocks. Clays Clay Miner. 18, 285306.CrossRefGoogle Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine nmdrocks, Orcadian basin, Scotland. Clays Clay Miner. 41, 240259.CrossRefGoogle Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 26, 149168.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. Am. Miner 76, 628640.Google Scholar
Jahren, J.S. & Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Miner. 24, 157170.CrossRefGoogle Scholar
Jiang, W. & Peacor, D.R. (1994a) Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. J. Met. Geol. 12, 867884.CrossRefGoogle Scholar
Jiang, W. & Peacor, D.R. (1994b) Prograde transitions of corrensite and chlorite in low-grade pelitic rocks from the Gaspé Peninsula, Quebec. Clays” Clay Miner. 42, 497517.CrossRefGoogle Scholar
Jiang, W., Peacor, D.R. & Buseck, P.R. (1994) Chlorite geothermometry? Contamination and apparent octahedral vacancies. Clays Clay Miner. 42, 593605.CrossRefGoogle Scholar
Jowet, E.C. (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/ SEG Joint Annual Meeting (Toronto), Program with Abstracts, 16, A62.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in elastic rocks. Pp. 289-493 in: Diagenesis in Sediments and Sedimentary Rocks (Larsen, G. & Chilingar, G.V., editors). Developments in Sedimentology, 25B.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low-grade metamorplrism. Pp. 227–300 in: Low Temperature Metamorphism (Frey, M., editor). Chapman & Hail, New York.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone: a critical comparison of illite “crystallinity” scalcs used for definition. J. Met. Geol. 8, 3146.CrossRefGoogle Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Met. Geol. 9, 665670.CrossRefGoogle Scholar
Kopp, O.C. & Fallis, S.M. (1974) Corrensite in the Willington Formation, Lyons, Kansas. Am. Miner. 59, 623624.Google Scholar
Kranidiotis, P. & MacLean, W.H. (1987) Systematic of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 82, 18981911.CrossRefGoogle Scholar
Kristmannsdottir, H. (1975) Clay minerals tbrmed by hydrothermal alteration of basaltic rocks in Icelandic geothermal fields. Geol. Foren. Stockholm Forhand. 97, 289292.CrossRefGoogle Scholar
Kristmannsdottir, H. (1979) Alteration of basaltic rocks by hydrothermal activity at 100–300°C. Proc. lnt. Clay Conf. Oxford, 359-367.CrossRefGoogle Scholar
Kubler, B. (1967) La cristallinite de l‘illite et les zones tout à fait supérieures du métamorphisme. Etages tectoniques, Colloque à Neuchâtel, 1966. Neuchâtel, Suisse: A la Baconniére, 105–121.Google Scholar
Kubler, B. (1968) Evaluation quantitative du metamorphisme par la crystallinité de l'illitc. Bull Centre Rech, Pau-S.N.P.A. 2, 385397.Google Scholar
Kubler, B. (1973) La corrensite, indicateur possible de milieux de sedimentation et du degre de transformation d'un sediment. Bull. Centre Rech. Pau-SNPA. 7, 343-556.Google Scholar
Laird, J. (1988) Chlorites: metamorplaic petrology. Pp. 405-453 in. Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, DC.Google Scholar
Liñan, E. & Gamez-Vintaned, J.A. (1993) Lower Cambrian palaeogeography of the Iberian Peninsula and its relations with some neighbouring European areas. Bull. Soc. Geol. France. 164, 831 -842.Google Scholar
Liñan, E., Gozalo, R., Gamez, J.A. & Alvaro, J. (1992) Las formaciones del grupo Mesones (Cambrico inferiormedio) en las Cadenas Ibericas. II. Congr. Geol. Esp. y VIII Congr. Latin. Geol. 1, 517523.Google Scholar
Liñan, E., Villas, E., Gamez-Vintaned, J.A., Alvaro, J., Gozalo, R., Palacios, T. & Sdzuy, K. (1996) Sintesis paleontológica del Cambrico y Ordovicio del Sistema Ibérico (Cadenas Ibericas y Cadenas Hespericas). Rev. Esp. Paleo., n° extraordinario, 21-32.Google Scholar
McDowell, S.D. & Elders, W.A. (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib. Mineral. Pet. 74, 293310.CrossRefGoogle Scholar
Mitsui, K. (1975) Diagenetic alteration of some minerals in argillaceous sediments in western Hokkaido, Japan. Tohoku University, Science Reports, Third Series (Mineralogy, Petrology, Economic Geology), 13, 1365.Google Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega-Huertas, M. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contrib. Mineral. Pet. 115, 243252.CrossRefGoogle Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of il lite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 44, 304323.CrossRefGoogle Scholar
Padan, A., Kisch, H.J. & Shagam, R. (1982) Use of lattice parameter b0 of dioctahedral illite/muscovite for the characterization of P/T gradients of incipient metamorpbism. Contrib. Mineral. Pet. 79, 8595.CrossRefGoogle Scholar
Pye, K., Krinsley, D.H., Burton, J.H. (1986) Diagenesis of U.S. Gulf coast shales. Nature (London), 324, 557559.CrossRefGoogle Scholar
Roberts, B. & Merriman, R.J. (1990) Cambrian and Ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic Welsh marginal basin. Geol. Mag. 127, 31-43.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical cmnposition from X-ray and chemical data for Pierre shale. U.S. GeoL Prof Paper. 391-c, 3I.Google Scholar
Shau, Y.H., Peacor, D.R. & Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contrib. Mineral. Pet. 105, 123142.CrossRefGoogle Scholar
Środoń, J. & Eberl, D.D. (1984) lllite. Pp. 495-544 in: Micas (Bailey, S.W., editor) Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC,Google Scholar
Spötl, C., Houseknecht, D.W. & Longstaffe FJ. (1994) Authigenic chlorites in sandstones as indicator of high-temperature diagenesis, Arkoma Foreland Basin, USA. d. Sed. Res. A64, 553566.Google Scholar
Velde, B. (1985) Possible chemical control of illite/smectite composition during diagenesis. Mineral Mag. 49, 387391.CrossRefGoogle Scholar
Velde, B. & Medhioub, M. (1988) Approach to chemical equilibrium in diagenetic chlorites. Contrib. Mineral. Pet. 98, 122127.CrossRefGoogle Scholar
Velde, B., E1 Moutaouakkil, N. & Ijima, A. (1991) Compositional homogeneity in low-temperature chlorites. Contrib. Mineral. Pet. 107, 2126.CrossRefGoogle Scholar
Villas, E. (1983) Las formaciones del Ordovicico medio y superior de las Cadenas Ibericas y su fauna de braquiopodos. Estudios Geol. 39, 359–377.Google Scholar
Walker, J.R. (1989) Polytypism of chlorite in very low grade metamorphic rocks. Am. Miner. 74, 738–743.Google Scholar
Walker, J.R. & Thompson, G.R. (1990) Structural variations in chlorite and illite in a diagenetic sequence fiom the hnperial Valley, California. Clays Clay Miner. 38, 315321.CrossRefGoogle Scholar
Warr, L.N. & Rice, A.H.N. (1994) lnterlaboratory standardization and calibration of clay mineral crystallinity size data. J. Met. Geol. 12, 141152.CrossRefGoogle Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Elsevier, Amsterdam.Google Scholar
Weaver, C.E., Highsmith, P.B. & Wampler, J.M. (1984) Chlorite. Pp. 99–139 in: Shale-Slate Metamorphism in Southern Appalachians (Weaver, C.E. & associates, editors) Elsevier, Amsterdam.Google Scholar
Wiewora, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner. 25, 83–92.Google Scholar
Yang, C. & Hesse, R. (1991) Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians. Clay Minen 26, 211–231.Google Scholar