Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T16:05:40.707Z Has data issue: false hasContentIssue false

Determination of the Ti speciation in commercial kaolins by Raman spectroscopy

Published online by Cambridge University Press:  09 July 2018

E. Murad
Affiliation:
Bayerisches Geologisches Landesamt, Concordiastrasse 28, D-96049 Bamberg
H. M. Köster
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Abstract

Raman spectra of a selection of kaolins with widely varying TiO2 contents revealed the presence of anatase in 17 of 18 samples. A significant positive correlation was observed between the intensity of the main anatase Raman band at ~145 cm-1 and the total TiO2 contents of the kaolins as determined by chemical analysis. No TiO2 modification other than anatase was detected in any of the samples.

The determination of the anatase contents in kaolins by XRD becomes increasingly difficult as the concentration of this mineral decreases below ~0.5%. In contrast, anatase and brookite concentrations an order of magnitude lower can still be readily identified by Raman spectroscopy. The specificity and sensitivity of Raman spectroscopy for these TiO2 polymorphs, coupled with the simplicity and rapidity of measurement, therefore make this a viable technique for the routine study of these accessory minerals in kaolins.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haskin, L.A., Wang, A., Rockow KM., Jolliff, B.M., Korotev, R.L. & Viskupic, K.M. (1997) Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: A point count method. J. Geophys. Res. . 102, 19, 29319,306.Google Scholar
Jepson, W.B. (1988) Structural iron in kaolinites and in associated ancillary minerals. Pp. 467-536 in: Iron in Soils and Clay Mineral. (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Reidel, Dordrecht/Boston.Google Scholar
Kóster, H.M. (1964a) Mineralogische und technologische Untersuchungen an Industriekaolinen. Teil 2. Ber. Deutsch. Keram. Ges. 41, 185196.Google Scholar
Kóster, H.M. (1964b) Mineralogische und technologische Untersuchungen an Industriekaolinen. Teil 1. Ber. Deutsch. Keram. Ges. 41, 17.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Milnes, A.R. & Fitzpatrick, R.W. (1989) Titanium and zirconium minerals. Pp. 1131-1205 in: Minerals in Soil Environments, 2nd editio. (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America Book Series No. 1, Madison, Wisconsin, USA.Google Scholar
Murad, E. (1997) Identification of minor amounts of anatase in kaolins by Raman spectroscopy. Am. Miner. 82, 203206.Google Scholar
Murad, E. & Wagner, U. (1991) Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrb. Miner. Abh. 162, 281309.Google Scholar
Murray, H.H. & Partridge, P. (1982) Genesis of Rio Jari kaolin. Proc. Int. Clay Conf., Bologna-Pavia. 279-291.Google Scholar
Ohsaka, T., Izumi, F. & Fujiki, Y. (1978) Raman spectrum of anatase, Ti02. J. Raman Spectr. 7, 321324.Google Scholar
Parker, T.W. (1969) A classification of kaolinites by infrared spectroscopy. Clay Miner. 8, 135141.Google Scholar
Salger, M. (1958) Mineralogische und sedimentpetrographische Untersuchungen am Kaolinprofil der Bohrung Kick Nr. 9 bei Schnaittenbach/Opf. Geol. Bavarica. 37, 84 pp.Google Scholar
Sayin, M. & Jackson, M.L. (1975) Anatase and rutile determination in kaolinite deposits. Clays Clay Miner. 23, 437443.Google Scholar
Schwertmann, U., Friedl I , Pfab, G., & Gehring, A.U. (1995) Iron substitution in soil and synthetic anatase. Clays Clay Miner. 43, 599606.Google Scholar
Stanjek, H. & Friedrich, R. (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization-corrected X-ray diagrams. Clay Miner. 21, 183190.Google Scholar
van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Minerals and other Non-Metallic Minerals. Pergamon, Oxford.Google Scholar