Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T13:21:23.213Z Has data issue: false hasContentIssue false

Destabilization of montmorillonite suspensions by Ca2+ and succinoglycan

Published online by Cambridge University Press:  09 July 2018

J . Labille*
Affiliation:
Laboratoire Environnement et Minéralurgie - UMR 7569 CNRS-INPL, BP 40, 54501 Vandoeuvre-lès-Nancy cedex, France
F. Thomas
Affiliation:
Laboratoire Environnement et Minéralurgie - UMR 7569 CNRS-INPL, BP 40, 54501 Vandoeuvre-lès-Nancy cedex, France
I . Bihannic
Affiliation:
Laboratoire Environnement et Minéralurgie - UMR 7569 CNRS-INPL, BP 40, 54501 Vandoeuvre-lès-Nancy cedex, France
C. Santaella
Affiliation:
CEA Cadarache DSV DEVM, Laboratoired'Ecologie Microbienne de laRhizosphère -UMR 163 CNRSCEA, Université Méditerranée, 13108, Saint-Paul-lez-Durance cedex, France
*

Abstract

Aggregation of colloidal clay particles (Na-montmorillonite) by CaCl2 and anionic polysaccharide (succinoglycan) in turbulent conditions was investigated using time-resolved size measurements by laser diffraction on diluted (50 mg l –1) and stirred suspensions. Excess of Ca2+ ions promotes coagulation of the clay, reducing interparticle repulsions, and allows adsorption of succinoglycan, inducing bridging flocculation. Growth/breakage cycles, characteristic of the turbulent conditions, cause the macromolecules to be incorporated in the innermost of the flocs, where the morphological units are shown by confocal microscopy to be the micrometric Ca-clay particles. Such incorporation results in an increased floc tensile strength, depending on the amount of macromolecules adsorbed, with a maximum at polysaccharide concentrations of 2 wt.% with respect to clay mass.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, Y. (1995) Dynamic aspects of coagulation and flocculation. Advances in Colloid and Interface Science, 56, 131.CrossRefGoogle Scholar
Adachi, Y. & Wada, T. (2000) Initial stage dynamics of bridging flocculation of polystyrene latex spheres with polyethylene oxide. Journal of Colloid and Interface Science, 229, 148154.Google Scholar
Boutebba, A., Milas, M. & Rinaudo, M. (1999) On the interchain associations in aqueous solutions of a succinoglycan polysaccharide. International Journal of Biological Macromolecules, 24, 319327.Google Scholar
Camp, T.R. & Stein, P.C. (1943) Velocity gradients and internal work in fluid motion. Journal of the Boston Society of Civil Engineers, 30, 219237.Google Scholar
Chenu, C. (1985) Etude expérimentale des interactions argiles-polysaccharides neutres. Contribution à la connaissance des phénomènes d’agrégation d’origine biologique dans les sols. PhD thesis, U.E.R. Sciences Physiques de la Terre, Univ. Paris VII, France.Google Scholar
Chenu, C., Pons, C.H. & Robert, M. (1987) Interaction of kaolinite and montmorillonite with neutral polysaccharides. Clay Minerals Society, Proceedings of the International Clay Conference, Denver (CO), 1985, Bloomington, Indiana, 375381.Google Scholar
Cheshire, M.V., Sparling, G.P. & Mundie, C.M. (1983) Effects of periodate treatment of soil on carbohydrate constituents and soil aggregation. Journal of Soil Science, 34, 105112.Google Scholar
Clapp, C.E. & Emerson, W.W. (1965) The effect of periodate oxidation on the strength of soil crumb. Soil Science Society of America Proceedings, 29, 127134.Google Scholar
Clapp, C.E. & Emerson, W.W. (1972) Reactions between Ca-montmorillonite and polysaccha rides. Soil Science, 114, 210216.Google Scholar
Clapp, C.E., Olness, A.E. & Hoffmann, D.J. (1968) Adsorption studies of a dextran on montmorillonite. Transactions of 9th International Congres of Soil Science, Adelaide . 1968, Internatinal Soil Science Society, Angus and Roberson, Sydney, 1, 627634.Google Scholar
Cohen-Stuart, M.A., Scheutjens, J.M.H.M. & Fleer, G.J. (1980) Polydispersity effects and the interpretation of polymer adsorptions isotherms. Journal of Polymer Science, 18, 559573.Google Scholar
Dowdy, R.H. & Mortland, M.M. (1967) Alcohol-water interactions on montmorillonite surfaces: I. Ethanol. Clays and Clay Minerals, Proceedings of 15th National Conferenc e, Pittsburgh (PA), 1966, Pergamon Press, Oxford England, 259271.Google Scholar
Dowdy, R.H. & Mortland, M.M. (1968) Alcohol-water interact ions on montmorilloni te surfaces: II. Ethylene glycol. Soil Science, 105, 3643.Google Scholar
Emerson, W.W. (1960) Complexes of calcium-montmorillonite with polymers. Nature, 186, 573574.Google Scholar
Fleer, G.J. & Scheutjens, J.M.H.M. (1986) Interaction between adsorbed layers of macromolecules. Journal of Colloid and Interface Science, 111, 504515.CrossRefGoogle Scholar
Fuller, L.G. & Goh, T.B. (1992) Stability-energ y relationships and their application to aggregation studies. Canadian Journal of Soil Science, 72, 453466.Google Scholar
Fuller, L.G., Goh, T.B., Oscarson, D.W. & Biliaderis, C.G. (1995) Flocculation and coagulation of Ca- and Mgsaturated montmorillonite in the presence of a neutral polysaccharide. Clays and Clay Minerals, 43, 533539.Google Scholar
Gardner, K.H. (1999) Kinetic models of colloid aggregation. Pp. 509550 in. Interfacial Forces and Fields, Theory and Applications . Surfactant Science Series, vol. 85, Marcel Dekker, inc. New York.Google Scholar
Gravanis, G., Milas, M., Rinaudo, M. & Clarke-Sturman, A.J. (1990) Conformational transition and polyelectrolyte behaviour of a succinoglycan polysaccharide. International Journal of Biological Macromolecules, 12, 195200.Google Scholar
Greenland, D.J., Lindstrom, G.R., & Quirk, J.P. (1961) Role of polysaccharides in stabilization of natural soil aggregates. Nature, 191, 12831284.CrossRefGoogle Scholar
Guidi, G., Pagliai, M., Petruzzelli, G. & Aringhieri, R. (1978) Changes in some physical properties of clay soi ls induce d by dextr ans. Zei tschri ft für Pflanzenernahrung und Bodenkunde, 141, 367377.Google Scholar
Harada, T., Amemura, A., Jansson, P.-E. & Lindberg, B. (1979) Comparative studies of polysaccharides elabor ated by Rhizobium, Alcaligenes, and Agrobact erium. Carbohyd rate Research, 77, 285288.CrossRefGoogle Scholar
Lafuma, F., Wong, K. & Cabane, B. (1991) Bridging of colloidal particles through adsorbed polymers. Journal of Colloid and Interface Science, 143, 921.Google Scholar
LaMer, V.K. (1964) Coagulat ion Symposium Introduction. Journal of Colloid Science, 19, 291293.Google Scholar
Lartiges, B.S. (1994) Déstabilisation d’une suspension de silice colloïdale par un sel d’aluminium. Relations entre les phénomènes de surface, la structure et la granulométrie des flocs . PhD thesis, Univ. INPL, Nancy, France.Google Scholar
Lartiges, B.S., Bottero, J.Y., Derrendinger, L.S., Humert, B., Tekely, P. & Suty, H. (1997) Flocculation of colloidal silica with hydrolysed aluminum: An 27Al solid state NMR investigation. Langmuir, 13, 147152.Google Scholar
Lu, S., Ding, Y. & Guo, J. (1998) Kinetics of fine particle aggregation in turbulence. Advances in Colloid and Interface Science, 78, 197235.Google Scholar
Pagliai, M., Guidi, G. & La Marca, M. (1980) Macro- and micromorphometric investigation on soil-dextran interactions. Journal of Soil Science, 31, 493504.Google Scholar
Parfitt, R.L. (1972) Adsorption of charged sugars by montmorillonite. Soil Science, 113, 417421.CrossRefGoogle Scholar
Parfitt, R.L. & Greenland, D.J. (1970a) The adsorption of poly(ethylene glycols) on clay minerals. Clay Minerals, 8, 305315.Google Scholar
Parfitt, R.L. & Greenland, D.J. (1970b) Adsorption of polysaccharides by montmorillonite. Soil Science Society of America Proceedings, 34, 862866.CrossRefGoogle Scholar
Pelssers, E.G.M., Cohen-Stuart, M.A. & Fleer, G.J. (1989) Kinetic aspects of polymer bridging: Equilibrium floccula tion and nonequili brium floccula tion. Colloids and Surfaces, 38, 1525.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1982) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. II. Etude de différents systèmes eau-smectites en fonction de la température. Clay Minerals, 17, 327338.Google Scholar
Rytwo, G., Banin, A. & Nir, S. (1996) Exchange reactions in the Ca-Mg-Na montmorillonite system. Clays and Clay Minerals, 44, 276285.Google Scholar
Spicer, P.T., Keller, W. & Pratsinis, S.E. (1996) The effect of impeller type on floc size and stucture during shear-induced flocculation. Journal of Colloid and Interface Science, 184, 112122.Google Scholar
Theng, B.K.G. (1982) Clay-polymer interaction s: Summary and perspect ives. Clays and Clay Minerals, 30, 110.Google Scholar
Tisdall, J.M. & Oades, J.M. (1982) Organic matter and water-stable aggregates in soil. Journal of Soil Science, 33, 141163.Google Scholar
Vantelon, D. (2001) Répartition des cations dans la couche octaédr ique des montmoril loni tes : Répercussions sur les propriétés colloïdales. PhD Thesis, Univ. INPL, Nancy, France.Google Scholar