Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:05:51.889Z Has data issue: false hasContentIssue false

Dehydration-hydration reactivity of laumontite: analyses and tests for easy detection

Published online by Cambridge University Press:  02 January 2018

Arturo Bravo
Affiliation:
Instituto de geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile Current address: Institut für Mineralogie, Brennhausgasse, TU Bergakademie Freiberg, Freiberg, Germany
Oscar Jerez
Affiliation:
Instituto de geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
Ursula Kelm*
Affiliation:
Instituto de geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
Mauro Poblete
Affiliation:
Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
*

Abstract

Hydration reactions are known to affect rock or aggregate stability in construction; laumontite is not usually considered to be a ‘problem-mineral’ though drill cores from the very low-grade metamorphic altered andesites and volcanoclastic rocks from Central Chile showed detachments of shotcrete in a tunnel exposed to periodic water flow, with expandable clay phases presumed to be responsible for the observed failure. Abundant laumontite detected in the cores may also be responsible for the detachment, however, resulting from the structural expansion and contraction in response to hydration and drying. Clay reactivity in construction projects is often tested on site by 30 days of ethylene glycol exposure, but adequate monitoring options for laumontite are not deployed. Options for laumontite characterization involving a combination of water immersion and slaking and modified oedometer-based expansibility tests were used here to observe the response to laumontite expansion pressure. All tests were formulated considering minimal implementation efforts for building sites or the easy availability of analytical and testing facilities.

Laumontite was identified by optical microscopy, semiquantitative X-ray diffraction, and automated mineralogical analysis. A combination of the latter two methods provided reliable information about the presence of sub-microscopic laumontite and a visual impression of the textural arrangement of the zeolite in the rock.

A slaking test based on four cycles of immersion followed by drying and final application of weight (simulated overburden) is best suited to indirect detection and for demonstrating rock reactivity due to the presence of laumontite. Rocks with laumontite show expansion when crushed, recompacted and fitted into an oedometer, but mineralogical information is required for adequate interpretation of the results.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T. & Gunter, M.E. (2001) Crystal structures of natural zeolites. Pp. 167 in: Natural Zeolites. Occurences, Properties, Applications. Reviews in Mineralogy and Geochemistry 45 (Bish, D.L. & Ming, D.W., editors). Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Armbruster, T. & Köhler, T. (1992) Rehydration and dehydration of laumontite, a single crystal study at 100 K. Neues Jahrbuch für Mineralogie, Monatshefte, 385397.Google Scholar
Artioli, G. & Stahl, K. (1993) Fully hydrated laumontite – a structure study by flat plate and capillary powder diffraction techniques. Zeolites, 13, 249255.CrossRefGoogle Scholar
Bell, F.G. & Haskins, D. R. (1997) A geotechnical overview of Katze Dam and Transfer Tunnel, Lesotho, with a note on basalt durability. Engineering Geology, 46, 175198.Google Scholar
Bish, D.L & Carey, J.W. (2001) Thermal behavior of natural zeolites. Pp. 404452 in: Natural Zeolites. Occurrences, Properties, Applications. Reviews in Mineralogy and Geochemistry, 45 (Bish, D.L. & Ming, D.W., editors). Mineralogical Society of America, Geochemical Society.CrossRefGoogle Scholar
Bucher, K., Seelig, U. & Stober, I. (2006) Water in fractured crystalline rocks, data from the Gotthard railroad tunnel. Geochimica et Cosmochimica Acta, Goldschmidt Conference Abstracts, A71. doi: 10.1016/j.gca.2006.06.246Google Scholar
Charrier, R., Baeza, O., Elgueta, S., Flyn, J., Gans, P., Kay, S., Muñoz, N., Wyss, A. & Zurita, E. (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern central Andes, Chile (33°–36°S.L.). Journal of South American Earth Sciences, 15, 117139.Google Scholar
Coombs, D.S. (1952) Cell size, optical properties and chemical composition of laumontite and leonhardite. American Mineralogist, 37, 812830.Google Scholar
Erlin, B. & Hime, W. (2008) Back to the lesser known evils of the concrete world. Concrete Construction, July 2008: http://www.concreteconstruction.net/how-to/materials/back-to-lesser-known-evils-of-the-concrete-world_o (Accessed September, 2016).Google Scholar
Erlin, B. & Jana, D. (2003) Forces of hydration that can cause havoc in concrete. Concrete International, 25, 5157.Google Scholar
Frey, M. & Robinson, D. (1999) Low-Grade Metamorphism. Blackwell Sciences, London, UK, 313 pp.Google Scholar
Fridriksson, T., Bish, D.L. & Bird, D.K. (2003) Hydrogen-bonded water in laumontite I: X-ray powder diffraction study of water site occupancy and structural changes in laumontite during room-temperature isothermal hydration/dehydration. American Mineralogist, 88, 277287.CrossRefGoogle Scholar
Fuentes, F. (2004) Petrología y metamorfísmo de muy bajo grado de unidades volcánica oligomiocenas en la ladera occidental de los Andes de Chile Central (33°S). Doctoral thesis, Department of Geology, Universidad de Chile, Santiago de Chile, 398 pp.Google Scholar
Gabuda, S.P. & Kzlova, S.G. (1995) Guest-guest interaction and phase transition in the natural zeolite laumontite. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 22, 113.Google Scholar
González de Vallejo, L.I., Ferrer, M., Ortuño, L. & Otero, C. (2002) Ingeniería Geológica. Pearson, Prentice Hall, Madrid, 715 pp.Google Scholar
Hamada, H., Yamaji, T., Mohammed, T.U. & Torii, K. (2005) Unexpected expansion of concrete with laumontite containing aggregates under seawater conditions. Asian Journal of Civil Engineering (Building and Housing), 6, 361372.Google Scholar
Helle, S., Jerez, O., Kelm, U., Pincheira, M. & Varela, B. (2010) The influence of rock characteristics on the acid leach extraction and re-extraction of Cu-oxide and sulfide minerals. Minerals Engineering, 23, 4550.Google Scholar
Iijima, A. (2001) Zeolites in petroleum and natural gas reservoirs. Pp. 347402 in: Natural Zeolites. Occurrences, Properties, Applications. Reviews in Mineralogy and Geochemistry 45 (Bish, D.L. & Ming, D.W., editors). Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Jana, D. (2007) Concrete scaling – a critical review. Proceedings of the twenty-ninth conference on cement microscopy, Quebec, Canada, May 20–24th.Google Scholar
Kiseleva, I., Navrotsky, A., Belitsky, I.A. & Fursenko, B.A. (1996) Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchange forces. American Mineralogist, 81, 668675.CrossRefGoogle Scholar
Klohn, E. (1960) Geología de Santiago, O'Higgins, Colchagua y Curicó. Instituto de Investigaciones Geológicas, Santiago de Chile, Boletín, 8, 95 pp.Google Scholar
Kol'tsova, T.N. (2009) Crystal structures of CaO-Al2O3-SiO2-H2O-Zeolites. Inorganic Materials, 45, 99115.Google Scholar
Koporulin, V.I. (2013) Formation of laumontite in sedimentary rocks: A case study of sedimentary sequences in Russia. Lithology and Mineral Resources, 48, 122137.CrossRefGoogle Scholar
Levi, B., Aguirre, L., Nyström, J. O., Padilla, H. & Vergara, M. (1989) Low-grade regional metamorphism in the Mesozoic-Cenozoic volcanic sequence of the Central Andes. Journal of Metamorphic Geology, 7, 487495.Google Scholar
Leyland, R.C., Paige-Green, P. & Momayez, M. (2013) Development of the road aggregate specification for the modified ethylene glycol durability index for basic crystalline material. Journal of Materials in Civil Engineering, doi: 10.1061(ACSE)MT.1943-5533.0000946.Google Scholar
López, C. editor (1996) Manual de rocas ornamentales. Prospección, explotación, elaboración y colocación. Entorno Gráfico, Madrid, 696 pp.Google Scholar
Mackenzie, W.S., Donaldson, C.H. & Guilford, C. (1982) Atlas of Igneous Rocks and Their Textures. Halstead Press, New South Wales, Australia, 148 pp.Google Scholar
Morrow, C.A. & Byerlee, J.D. (1991) A note on the frictional strength of laumontite from Cajon pass, California. Geophysical Research Letters, 18, 211214.Google Scholar
Neuhoff, P.S. & Bird, D.K. (2001) Partial dehydration of laumontite: thermodynamic constraints and petrogenetic implications. Mineralogical Magazine, 65, 5970.Google Scholar
Paige-Green, P. (2008) A revised ethylene glycol test for assessing the durability of basic crystalline materials for rock aggregate. International Geological Congress, Oslo, Norway, August 6–14th, MRC-08 Geological Construction Materials, Part 1, accessed through: http://www.cprm.gov.br/33IGC/1323199.html (accessed September 2016).Google Scholar
Pearson, J.C. & Loughlin, G.F. (1923) An interesting case of dangerous aggregate. Proceedings of the American Concrete Institute, 19, 142154.Google Scholar
Rashchenko, S.V., Sertyotkin, Y.V. & Bakakin, V.V. (2012) A X-ray single crystal study of alkaline cations influence on laumontite hydration ability: 1. Humidity-induced hydration of Na,K-rich laumontite. Microporous and Mesoporous Materials, 151, 9398.CrossRefGoogle Scholar
Rauch, F. & Thuro, K. (2007) Rasche und optimierte Vorhersage von Quelleigenschaften bei Tonen mithilfe des Pulverquellversuches. Veröffentlichungen von der 16. Jahrestagung für Ingenieurgeologie, March 7th–10th, Bochum, Germany.Google Scholar
Robinson, D., Bevins, R.E., Aguirre, L. & Vergara, M. (2004) A reappraisal of episodic burial metamorphism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 146, 513528.Google Scholar
Stahl, K., Artioli, G. & Hansen, J.C. (1996) The dehydration process in the zeolite laumontite. A real time synchrotron X-ray powder diffraction study. Physics and Chemistry of Minerals, 23, 328336.Google Scholar
Summer, P.D., Hall, K.J., van Rooy, J.L. & Meiklejohn, K.I. (2009) Rock weathering on the eastern mountains of Southern Africa. Review and insights from case studies. Journal of African Earth Sciences, 55, 236244.Google Scholar
Thuro, K. (1993) Der Pulverquellversuch – ein neuer Quellhebungsversuch. Geotechnik, 16, 101106.Google Scholar
Tschernich, R.W. (1992) Zeolites of the World. Geoscience Press Inc., Phoenix, Arizona, USA, 563 pp.Google Scholar
Utada, M. (2001 a) Zeolites in burial diagenesis and low-grade metamorphic rocks. Pp. 277304 in: Natural Zeolites. Occurences, Properties, Applications. Reviews in Mineralogy and Geochemistry 45 (Bish, D.L. & Ming, D.W., editors). Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Utada, M. (2001 b) Zeolites in hydrothermally altered rocks. Pp. 306322 in: Natural Zeolites. Occurences, Properties, Applications. Reviews in Mineralogy and Geochemistry 45 (Bish, D.L. & Ming, D.W., editors). Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Vázquez, M., Nieto, F., Morata, D., Droguett, B., Carillo-Rosua, F. J. & Morales, S. (2014) Evolution of clay mineral assemblages in the Tinqueririca geothermal field, Andean cordillera of central Chile: an XRD and HRTEM-AEM study. Journal of Volcanology and Geothermal Research, 282, 4359.Google Scholar
Weissenberger, T. & Bucher, K. (2010) Zeolites in fissures of granites and gneiss of the Central Alps. Journal of Metamorphic Geology, 28, 825847.Google Scholar
White, C.L.I.M., Rabdel Ruiz-Salvador, A. & Lewis, D.H. (2004) Pressure-induced hydration effects in the zeolite laumontite. Angewandte Chemie, International Edition, 43, 469472.Google Scholar