Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T16:28:35.516Z Has data issue: false hasContentIssue false

Correlation between crystallochemical parameters of phyllosilicates and mineral facies in very low-grade metasediments of the Betic Cordilleras, Spain: a synthesis

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
P. Rodríguez Jiménez
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
*

Abstract

Clay mineral evolution in diagenetic and very low-grade metamorphic sedimentary rocks from the Maláguide Complex was studied using the following parameters: illite and chlorite crystallinity, b cell dimension of illite, chemistry of chlorite, and the occurrence and distribution of the following phyllosilicates: I-S mixed-layer minerals, kaolin polytypes, chlorite-bearing mixedlayer minerals (tosudite and mica-chlorite interstratifications), vermiculite-like minerals, paragonite and biotite. The distribution of IC values permits the subdivision of the study area into three zones: diagenetic, anchizone and epizone. On the contrary, the distribution of CC values cannot be used in the study of the metamorphic zonation. The mineralogy and b dimension of illite indicate that the Maláguide samples display a low to low-medium pressure metamorphism, also characterized by steep temperature gradients.

The correlation between IC data and distribution of other significant minerals has permitted the establishment of a zonation within the chlorite zone, which is confirmed by the appearance of some index minerals, such as paragonite, biotite, chloritoid and andalusite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. (1962) Relationships between mineral association, chemical composition, and physical properties of the chlorite series. American Mineralogist, 47, 851879.Google Scholar
Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723734.Google Scholar
Bevins, R.E. & Merriman, R.J. (1988) Compositional controls on coexisting prehnite-actinolite and prehnite- pumpellyite facies assemblages in the Tal y Fan metabasite intrusion, North Wales: implications for Caledonian metamorphic field gradients. Journal of Metamorphic Geology, 6, 1739.Google Scholar
De Caritat, P., Hutcheon, I. & Walshe, J.L. (1993) Chlorite geothermometry: a review. Clays and Clay Minerals, 41, 219239.Google Scholar
Díaz de Federico, A., Torres Roldan, R. & Puga, E. (1990) The rock series of the Betic substratum. Pp. 1213 and 19–29 in: Le Bassin Néogène du Domain Bé tique Oriental. Documents et Travaux (Institute Géologique Albert de L’Apparent) Paris.Google Scholar
Durand-Delga, M. (1968) Coup d’oeil sur les unités Malaguides des Cordillères Betiques (Espagne). Comptes Rendues de l’Academie des Sciences, 266, 190193.Google Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28, 325352.Google Scholar
Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry A critical perspective. Clays and Clay Minerals, 43, 540553.Google Scholar
Felder, T.E. (1978) Zur geologischen Entwicklung der Betischen Interzonen der Westichen Serranía de Ronda (Prov. Málaga, Spanien). Mitteilungen Geologischen Institut ETH Zürich, 222, 168 p.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 958 in: Low-Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow, UK.Google Scholar
Guidotti, C.V., Sassi, F.P. & Blencoe, J.G. (1989) Compositional controls on the aand bcell dimensions of 2M 1 muscovite. European Journal of Mineralogy, 1, 7184.Google Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorite. Clay Minerals, 26, 149168.Google Scholar
Hower, J., Eslinger, E., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments. 1: Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low-grade metamorphism. Pp. 227300 in: Low- Temperature Metamorphism (Frey, M., editor). Blackie & Sons, Glasgow, UK.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, an d int er l abo ra tory sampl es. Journal of Metamorphic Geology, 9, 665670.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphism par la cristallinité de l’illite. Bulletin Centre Recherche Pau-SNPA, 2, 385397.Google Scholar
Laird, J. (1988) Chlorites: metamorphic petrology. Pp. 498537 in. Hydrous Phyllosilicates (exclusive of Micas ) (Bailey, S.W., editor ). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Mäkel, G.H. (1985) The geology of the Maláguide Complex and its bearing on the geodynamic evolution of the Betic-Rif orogen (Southern Spain and Northern Morocco). GUA Papers of Geology, 22, 263 p.Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell, Oxford, UK.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford & New York, 332 pp.Google Scholar
Padan, A., Kisch, H.J. & Shagan, R. (1982) Use of the lattice parameter bo of dioctahedral illite/muscovite for the characterization of P/T gradients of incipient metamorphism. Contributions to Mineralogy and Petrology, 79, 8595.Google Scholar
Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon- bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119133.Google Scholar
Ruiz Cruz, M.D. (1996) Nacrite, dickite and possible dickit e/nacrit e mixed- layers from the Betic Cordilleras (Spain). Clays and Clay Minerals, 44, 357369.CrossRefGoogle Scholar
Ruiz Cruz, M.D. (1997) Chlorite with anomalous chemistry and opt ical properti es from the Maláguide Complex (Betic Cordilleras, Spain). The Canadian Mineralogist, 35, 923935.Google Scholar
Ruiz Cruz, M.D. (1999) New data for metamorphic vermiculite. European Journal of Mineralogy, 11, 533548.Google Scholar
Ruiz Cruz, M.D. (2001) Mixed-layers mica/chlorite in very low-grade metaclastites from the Maláguide Complex (Betic Cordilleras, Spain). Clay Minerals, 36, 307324.Google Scholar
Ruiz Cruz, M.D. & Andreo, B. (1996a) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Minerals, 31, 133152.Google Scholar
Ruiz Cruz, M.D. & Andreo, B. (1996b) Tosudite in very low-grade metamorphi c graywackes from the Málaga area (Betic Cordilleras, Spain). European Journal of Mineralogy, 8, 13911399.Google Scholar
Ruiz Cruz, M.D. & Moreno Real, L. (1993) Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays and Clay Minerals, 41, 570579.Google Scholar
Ruiz Cruz, M.D. & Serrano, F. (1992) Mineralogía y geoquímica de sedimentos de la cobertera Maláguide al este de Málaga (Cordilleras Béticas, España). Conferencias y Comunicaciones del IV Congreso de Geoquímica de España, 1, 93107.Google Scholar
Sassi, F.P. & Scolari, A. (1974) The b o value of the potassic white micas as a barometric indicator in low- grade metamorphism of pelitic schists. Contributions to Mineralogy and Petrology, 45, 143152.Google Scholar
Shutov, V.D., Aleksandrova, A.V. & Losievskaya, S.A. (1970) Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentology, 15, 6982.Google Scholar
Velde, B. (1978) High temperature or metamorphic vermiculites. Contributions to Mineralogy and Petrology, 66, 319323.Google Scholar
Velde, B. (1984) Electron microprobe analysis of clay minerals. Clay Minerals, 19, 243247.Google Scholar
Wang, H., Frey, M. & Stern, B. (1996) Diagenesis and metamorphism of clay minerals in the Helvetic Alps of Eastern Switzerland. Clays and Clay Minerals, 44, 96112.Google Scholar
Warr, L.N. and Rice, A.H.N. (1994) Interlaboratory standarization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141152.Google Scholar
Weaver, C.E. & Beck, K.C. (1971) Clay-water diagenesis during burial: how mud becomes gneiss. Geological Society of America, Special Paper, 134, 96 pp.Google Scholar
Yang, C. & Hesse, R. (1991) Clay minerals as indicators of diagenetic and metamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians. Clay Minerals, 26, 211231.Google Scholar
Zane, A. & Sassi, R. (1998) New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. The Canadian Mineralogist, 36, 713726.Google Scholar