Article contents
Compositional trends of a Cretaceous foreland basin shale (Belle Fourche Formation, Western Canada Sedimentary Basin): diagenetic and depositional controls
Published online by Cambridge University Press: 09 July 2018
Abstract
Compositional trends of the Cenomanian Belle Fourche Formation, a marine shale unit in the Western Canada Sedimentary Basin, have been investigated on a regional scale using bulk-rock geochemistry and mineralogy, clay mineral compositions and oxygen isotope geochemistry of shale and bentonite core samples. Smectitic illite-smectite found in the matrix of immature, hemipelagic samples is compositionally and isotopically consistent with an origin from low-temperature alteration of volcanic ash in the central Western Interior Seaway, where the basin received minimal detrital input. The origin of the more illitic matrix in the deeply buried, western, pro-deltaic shales can be interpreted in terms of either diagenetic ‘illitization’ of a smectitic precursor, or depositional mixing of abundant, detrital, illitic material with minor amounts of ashfall-derived smectite. It is concluded that: (1) documented silicate mineral reactions during deep diagenesis of the Belle Fourche Formation took place in a relatively closed system, with no significant import or export of mobile species at the formation scale; and (2) diagenesis and depositional mixing can have similar effects in terms of bulk-rock and oxygen isotope geochemistry, and mineral compositions and assemblages.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 1994
References
- 11
- Cited by