Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T15:59:50.514Z Has data issue: false hasContentIssue false

Comportement des ions aluminiques et de la silice en solution: Etude de la formation de la kaolinite

Published online by Cambridge University Press:  09 July 2018

P. Espiau
Affiliation:
Centre d'Etudes Phytosociologiques et Ecologiques L. Emberger, BP 5051, 34033 Montpellier Cedex
G. Pedro
Affiliation:
Station de Science du Sol, Centre National de la Recherche Agronomique, Route de St-Cyr, 78000 Versailles, France

Resume

L'intérêt porté à la synthèse de la kaolinite a été suscité par des préoccupations d'ordre pédologique, qui nous ont amenés à comparer les expériences réalisées en laboratoire aux situations naturelles considérées comme propices à la formation de la phyllite 1/1. Il apparaît essentiel, pour le succès des synthèses, de privilégier la formation d'ions hydroxylés monomères de Al, pouvant réagir avec l'acide orthosilicique. La neutralisation lente et partielle de solutions très diluées semble garantir ces conditions. Deux séries d'essais ont été entrepris. Les résultats expérimentaux tendent à démontrer la possibilité d'obtenir une précipitation de kaolinite à partir des ions en solution et par simple neutralisation. Le mécanisme proposé par Siffert (1962), mettant en jeu la formation d'éléments T-O, semble le plus probable. Ces éléments prendraient naissance par réaction de l'acide orthosilicique et de l'ion Al(OH)2+. Le rapprochement entre l'importance du rôle joué ici par ce monomère hydroxylé et la place qu'il occupe dans le schéma de dissolution établi par Sarazin (1979) peut permettre de comprendre que les néoformations de kaolinite correspondent à des sols relativement bien drainés.

Abstract

Abstract

Pedological considerations led us to study kaolinite synthesis and compare data from laboratory experiments with the processes occurring in a natural environment believed to be favourable to the formation of a 1/1 phyllite. In order to obtain successful syntheses, it was first considered necessary to study the formation of Al monomer hydroxylated ions which can react with orthosilicic acid. These conditions are best provided by the slow and partial neutralization of highly dilute solutions. Two series of tests were conducted. The results show that kaolinite precipitation can be obtained from ions in solution and simple neutralization. The process suggested by Siffert (1962) based on the formation of T-O elements is most likely involved. T-O elements are derived from the reaction between orthosilicic acid and the Al(OH)2+ion. When comparing the important role played here by this hydroxylated monomer with its function in the dissolution scheme determined by Sarazin (1979), it becomes clearer why neogenesis of kaolinite occurs in relatively well drained soils.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Bottero, J.Y. (1979) Etude de I'hydrolyse des solutions aqueuses de chlorure d'aluminium. Thèse, Institut National Polytechnique de Lorraine, Nancy.Google Scholar
Bottero, J.Y., Cases, J.M., Fiessinger, F. & Poirier, J.E. (1980) Studies of hydrolysed aluminium chloride solutions: 1. Nature of aluminium species and composition of aqueous solutions. J. Phys. Chem. 84, 29332939.Google Scholar
Dalal, R.C. (1975) Hydrolysis products of solutions and exchangeable aluminium in acid soils. Soil Sci. 119, 127131.Google Scholar
De Kimpe, C., Gastuche, M.C. & Brindley, G.W. (1961) Ionic coordination in alumino-silicic gels in relation to clay mineral formation. Am. Miner. 49, 116.Google Scholar
Espiau, P. & Peyronnel, A. (1976) L'acidité d'échange dans les sols: méthode de détermination de l'aluminium échangeable et des protons échangeables. Science du Sol 3, 161175.Google Scholar
Esteoule, J. (1969) Contribution à la genèse des argiles dioctaédriques dans les conditions de surface. Thèse Univ. de Rennes, sér. B, order no 102, séries no 55, 116 pp.Google Scholar
Farmer, V.C. & Fraser, A.R. (1979) Synthetic imogolite, a tubular hydroxyaluminium silicate. Proc. Int. Clay Conf. Oxford, 547553.Google Scholar
Frink, C.R. & Sawhney, B.L. (1967) Neutralization of dilute aqueous aluminium salt solution. Soil Sci. 103, 144148.CrossRefGoogle Scholar
Harder, H. (1965) Expériences sur la précipitation de l'acide silicique. Geochim. Cosmochim. Acta 29, 429442.CrossRefGoogle Scholar
Harder, H. (1970) Kaolinit-synthese bei niedrigen Temperaturen. Naturwissenschaften, 57193 Google Scholar
Hem, J.D. & Lind, C.J. (1974) Kaolinite synthesis at 25°C. Science 184, 11711173.Google Scholar
Hill, V.T. (1966) New direct spectrophotometric determination of aluminium in steel, smelter and iron ores. Analytical Chemistry 38, 654656.CrossRefGoogle Scholar
Kittrick, J.A. (1971) Soil solution composition and stability of clay minerals. Soil Sci. Soc. Am. Proc. 35, 450454.Google Scholar
La Iglesia, A. & Martin Vivaldi, J.L. (1972) A contribution to synthesis of kaolinite. Proc. lnt. Clay Conf. Madrid, 173185.Google Scholar
La Iglesia, A. & van Oosterwyck-Gastuche, M.C. (1978) Kaolinite synthesis: I. Crystallization conditions at low temperatures. II. A review and discussion of the factors influencing the rates process. Clays Clay Miner. 26, 397408 et 409417.Google Scholar
Linares, J. & Huertas, F (1971) Kaolinite: synthesis at room temperature. Science 171, 896897.Google Scholar
Milhomme, H. (1959) Méthodes et techniques d'analyses courantes par colorimétrie automatisée. Document no 88 CEPE, CNRS, Montpellier, France.Google Scholar
Sarazin, G. (1979) Géochimie de l'aluminium au cours de l'altération des granites et des basaltes sous climat tempéré. Thèse Univ. Paris VII, 169 pp.Google Scholar
Siever, R. (1970) Handbook of Geochemistry. (Wedepohl, K., editor), 2, 14-H.1. SpringerVerlag, Berlin.Google Scholar
Siffert, B. (1962) Quelques réactions de la silice en solution: la formation des argiles. Mém Serv. Carte Géol. Alsace-Lorraine 21, 86 pp.Google Scholar
Stol, R.J., van Helden, A.K. & De Bruyn, P.L. (1976) Hydrolysis-precipitation studies of aluminium (III) solutions. 2. A kinetic study and model. J. Colloid Interface Sci. 57, 115131.Google Scholar
Vermeulen, A.C., Geus, J.W., Stol, R.J. & De Bruyn, P.L. (1975) Hydrolysis-precipitation studies of aluminium (III) solutions: I. Titrations of acidified aluminium nitrate solutions. J. Colloid Interface Sci. 5l, 449458.CrossRefGoogle Scholar
Wey, R. & Siffert, B. (1962) Réactions de la silice monomoléculaire en solution avec les ions Al3+ et Mg2+ . Colloque sur la genèse et la synthèse des argiles, CNRS 105, 1123.Google Scholar