Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T11:29:16.840Z Has data issue: false hasContentIssue false

A comparison of properties of clay minerals in isalteritic and in degraded facies

Published online by Cambridge University Press:  09 July 2018

F. S. Oliveira*
Affiliation:
Departamento de Geologia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, 35400-000, MG, Brazil Departamento de Geografia, Instituto de Geociências, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil
A. F. D. C. Varajão
Affiliation:
Departamento de Geologia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, 35400-000, MG, Brazil
C. A. C. Varajão
Affiliation:
Departamento de Geologia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, 35400-000, MG, Brazil
B. Boulangé
Affiliation:
Museé de la Bauxite, Tourves, France
*

Abstract

The mineralogical, geochemical and micromorphological features of an isalteritic clay facies, which originated from weathering of an anorthosite, were compared to those of clay facies derived from the degradation of a bauxite developed from the same rock. The isalteritic clay was formed by the hydrolytic alteration of plagioclase, whereas the degraded clays were formed by decomposition of gibbsite and neoformation of kaolinite. This resilification process resulted from the reintroduction of silica via the oscillation of the phreatic level and/or the decomposition of organic matter on the surface. The degradation process was gradual and yielded two different facies: (a) degraded clays with almost total decomposition of gibbsite, and (b) degraded clays with gibbsite nodules. Morphologically, the isalteritic clays differ from the degraded clays because they contain larger hexagonal and pseudo-hexagonal crystals. The degraded clays have more irregular crystal shapes, ranging from laths to anhedral shapes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleva, G.J.J. (1965) The buried bauxite deposit of Onverdacht, Surinam, South America. Geologie en Mijnbouw, 44, 45–58.Google Scholar
Almeida, F.F.M., Hasui, Y., Brito Neves, B.B. & Fuck, R.A. (1981) Brazilian structural provinces: an introduction. Earth Science Review, 17, 1–29.Google Scholar
Bocquier, G., Boulangé, B., Ildefonse, P., Nahon, D. & Muller, D. (1982) Transfers, accumulation modes, mineralogical transformations and complexity of historical development profiles. II International Seminar on Laterization, São Paulo, 1, 331–337.Google Scholar
Boulangé, B. (1984) Les formations bauxitques latéritiques de Cô te d’Ivoire. Les faciès, leur transformation, leur distribution et l’évolution du modelé. PhD Thesis, ORSTOM, Travaux et Documents, 175, Paris.Google Scholar
Boulangé, B. & Bocquier, G. (1983) Le rôle du fer dans la formation des pisolites alumineux au sein des cuirasses bauxitiques latéritiques. Sciences et Géologie, 1, 29–36.Google Scholar
Brasil, Ministério das Minas e Energia, Departamento Nacional da Produção de Minerais (1981) Folhas SC.22 e SD.22: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. 22 e 25, pp. 1–524 in: Projeto RADAMBRASIL, Rio de Janeiro.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London, 495 pp.CrossRefGoogle Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals. 544 pp. Mineralogical Society, London.Google Scholar
Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T. & Babel, U. (1985) Handbook for Soil Thin Section Description. 152 pp. Waine Research Publications, Wolverhampton.Google Scholar
Christidis, G.E. & Eberl, D.D. (2003) Determination of layer-charge characteristics of smecites. Clays and Clay Minerals, 51, 644–655.CrossRefGoogle Scholar
Correia, C.T., Girardi, V.A.V., Basei, M.A.S. & Nutman, A. (2007) Cryogenian U-Pb (SHRIMP I) zircon ages of anorthosites from the upper sequences of Niquelândia and Barro Alto Complexes, Central Brazil. Revista Brasileira de Geociências, 37, 70–75.Google Scholar
Dangic, A. (1985) Kaolinization of bauxite: a study in the Vlasenica Bauxite area, Yugoslavia. I. Alteration of matrix. Clays and Clay Minerals, 33, 517–524.CrossRefGoogle Scholar
Delvigne, J.E. (1998) Atlas of Micromorphology of Mineral Alteration and Weathering. Canadian Mineralogist, Special Publication, 495 pp.Google Scholar
Dixon, J.B. (1989) Kaolinite and serpentine group minerals. Pp. 357–403 in: Minerals In Soils Environments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. Journal of Soil Science, 4, 233–237.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. 596 pp. McGraw-Hill, New York.Google Scholar
Keller, W.D. (1978) Classification of kaolins exemplified by their textures in scan electron micrographs. Clays and Clay Minerals, 26, 1–20.Google Scholar
Keller, W.D. & Clarke, O.M. Jr. (1984) Resilication of bauxite at the Alabama Street Mine, Saline County, Arkansas, illustrated by scanning electron micrographis. Clays and Clay Minerals, 32, 139–146.Google Scholar
Lindsay, W.L. (1979) Chemical Equilibria in Soils. 449 pp. John Wiley & Sons, New York.Google Scholar
Lucas, Y., Luizão, F.J., Chauvel, A., Rouiller, J. & Nahon, D. (1993) The relation between biological activity of the rainforest and mineral composition of the soils. Science, 260, 521–23.Google Scholar
Millot, G. (1970) Geology of Clays. 425 pp. Springer, New York.Google Scholar
Munsell, (1975) Munsell Soil Color Charts. Munsell Color Company, Baltimore.Google Scholar
Oliveira, F.S., Varajão, A.F.D.C., Varajão, C.A.C., Boulangé, B., Costa, J.L.G. & Vessani, L.A. (2009) Alteração supergênica e morfogênese tropical no Complexo Máfico-Ultramáfico Acamadado de Barro Alto, GO. Geociências, 28, 255–272.Google Scholar
Oliveira, F.S., Varajão, A.F.D.C., Varajão, C.A.C., Boulangé, B. & Gomes, N.S. (2011) Bauxitisation of anorthosites from Central Brazil. Geoderma, 167–168, 319–327.Google Scholar
Oliveira, F.S., Varajão, A.F.D.C., Varajão, C.A.C., Bou langé, B. & Soares, C.C.V. (2013) Mineralogical, micromorphological and geochemical evolution of the facies from the Bauxite deposit of Barro Alto, Central Brazil. Catena, 105, 29–39.Google Scholar
Pedro, G. (1964) Contribution à l’étude expérimentale de altération chimique dês roches cristallines. PhD Thesis, Faculté des Sciences Paris, Paris, 344 pp.Google Scholar
Pimentel, M. M., Ferreira Filho, C. F. & Amstrong, R. A. (2004) SHRIMP U-Pb and Sm-Nd ages of the Niquelândia layered complex: Meso (1.25 Ga) and Neoproterozoic (0.79 Ga) extensional events in central Brazil. Precambrian Research, 132, 132–135.Google Scholar
Reis, L.G.R. (2007) Goiás: investimentos em novos projetos superam US$ 2 bilhões. Revista Brasileira de Mineração, 258, 28–37.Google Scholar
Riccomini, C. & Assumpção, M. (1999) Quaternary tectonics in Brazil. Episodes, 22, 221–225.Google Scholar
Sigolo, J.B. & Boulange, B (1987) Caracterização das fácies de alteração de uma topo-seqüência no maciço alcalino de Passa Quatro, MG. Revista Brasileira de Geociências, 17, 269–275.Google Scholar
Saadi, A., Bezerra, F.H.R., Costa, R.D., Igreja, H.L.S. & Franzinelli, E. (2005) Neotectônica da Plataforma Brasileira. Pp. 211–234 in: Quaternário do Brasil (Souza, C.R.G., Suguio, K., Oliveira, A.M.S. & Oliveira, P.E., editors). Ribeirão Preto, Holos.Google Scholar
Singh, B. & Gilkes, R.J. (1992) Properties of soil kaolinites from south-western Australia. Journal of Soil Science, 43, 645–647.CrossRefGoogle Scholar
Spier, C.A., Vasconcelos, P.M. & Oliveira, S.M.B. (2006) 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Chemical Geology, 234, 79–104.Google Scholar
Tardy, Y., Kobilsek, B. & Paquet, H. (1991) Mineralogical composition and geographical distribution of African and Brazilian laterites. The influence of continental drift and tropical paleoclimates during the last 150 million years and implications for India and Australia. Journal of African Earth Science, 12, 283–295.Google Scholar
Tewari, G.P. (1963) Occurrence of kaolinite in association with iron-pan. Nature, 198, 1019.Google Scholar
Valenton, I. (1974) Resilification at the top of the foreland bauxite in Surinam and Guyana. Mineralium Deposita, 9, 169–173.Google Scholar
Van der Marel, H.W. (1960) Quantitative analysis of kaolinite. Silicates Industriels, 25, 23–31.and 76–86.Google Scholar
Varajão, A.F.D.C., Boulangé, B. & Melfi, A.J. (1990) Caracterizacão morfológica, mineralógica e química das fácies estruturais da jazida de caulinita de Vargem dos Σculos, Quadrilátero Ferrífero, MG. Revista Brasileira de Geociências, 20, 75–82.Google Scholar
Varajão, A.F.D.C., Gilkes, R.J. & Hart, R.D. (2001) The relationships between kaolinite crystal properties and the origin of materials for a Brazilian kaolin deposit. Clay and Clay Minerals, 49, 44–59.Google Scholar
Veiga, A.T.C. & Girodo, A.C. (2008) Modelamento geológico e abordagem geoestatística da jazida de bauxita de Barro Alto – GO. 157 pp. GEOS Consultoria, Goiânia.Google Scholar
Velde, B. & Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. 406 pp. Springer-Verlag, Berlin.CrossRefGoogle Scholar