Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T16:43:18.084Z Has data issue: false hasContentIssue false

Comparison between thermally-stimulated current and complex impedance spectroscopy measurements on a dehydrated Ca-montmorillonite

Published online by Cambridge University Press:  09 July 2018

A. Haouzi
Affiliation:
1Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique (UMR 5617 CNRS), Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
H. Belarbi
Affiliation:
1Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique (UMR 5617 CNRS), Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
J. C. Giuntini
Affiliation:
1Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique (UMR 5617 CNRS), Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
J. Vanderschueren
Affiliation:
Chimie Macromoléculaire et Chimie Physique, Université de Liège, Institut de Chimie au Sart-Tilman, B4000 Liège, Belgium
S. Staunton
Affiliation:
Unité de Science du Sol, INRA, 2 place Viala, 34060 Montpellier Cedex 2, France
J. V. Zanchetta*
Affiliation:
1Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique (UMR 5617 CNRS), Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
*

Abstract

The polarization conductivity, σ'(ω) of a Ca-montmorillonite has been determined by complex impedance spectroscopy. The technique of thermally-stimulated currents (TSC) leads to the determination of the different relaxation parameters, such as the distribution function of the different relaxation processes. The results demonstrated the coherence of the two approaches, and confirmed that the conducting phenomenon is due to the hopping of charge carriers between localized sites. The energy corresponding to the hopping process is evaluated using two different methods of analysis of the TSC signal. The values obtained are compared to those observed on a Na-montmorillonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelouahab, C., Ait Amar, H., Obretenov, T.Z. & Gaid, A. (1988) Caractéristiques physico-chimiques et structurales de quelques argiles bentonitiques du nord-ouest algérien. Analusis, 16, 292–299.Google Scholar
Belarbi, H., Haouzi, A., Giuntini, J.C., Zanchetta, J.V., Niezette, J. & Vanderschueren, J. (1997) Interpretation of orientation polarization in homoionic dry montmorillonite. Clay Miner. 32, 13–20.CrossRefGoogle Scholar
Bucci, C. & Fieschi, R. (1964) Ionic thermoconductivity. Method for the investigation of polarization in insulators. Phys. Rev. Lett. 12, 16–19.CrossRefGoogle Scholar
Buet, F., Giuntini, J.C., Henn, F. & Zanchetta, J.V. (1992) Microscopic considerations of the calculation of the polarization conductivity in ionically conducting glasses. Phil. Mag. B66, 77–88.Google Scholar
Calvet, R. (1972) Hydratation de la montmorillonite et diffusion des cations compensateurs. These es science, Paris, France.Google Scholar
Devautour, S., Vanderschueren, J., Giuntini, J.C., Henn, F., Zanchetta, J.V. & Ginoux, J.L (1998) Na+/mordenite interaction energy determined by thermally stimulated depolarization current. J. Phys. Chem. 102, 3749–3756.Google Scholar
Devautour, S., Henn, F., Giuntini, J.C., Zanchetta, J.V. & Vanderschueren, J. (1999) Discrimination between dipolar and space-charge relaxation by thermally stimulated current spectroscopy: application to several alkali-exchanged mordenites. J. Phys. D: Appl. Phys. 32, 147–156.CrossRefGoogle Scholar
Fripiat, J.J., Jelli, A., Poncelet, G. & Andre, J. (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas. J. Phys. Chem. 69, 2185–2196.Google Scholar
Giuntini, J.C., Jabobker, A. & Zanchetta, J.V. (1985) Etude de l'interaction eau-kaolinite par mesures des permittivités complexes. Clay Miner. 20, 347–365.Google Scholar
Giuntini, J.C., Vanderschueren, J., Zanchetta, J.V. & Henn, F. (1994) Thermally stimulated polarizationdepolarization current and polarization conductivity in ionically conducting glasses. Phys. Rev. B50, 12489–12495.CrossRefGoogle ScholarPubMed
Giuntini, J.C., Zanchetta, J.V. & Salam, F. (1995) Analysis of experimental problems connected with polarization conductivity measurements: application to electronic and ionic transport. Mat. Sci. Eng. B33, 75–84.Google Scholar
Glaser, R. & Mering, J. (1968) Domaines d'hydratation homogène des smectites. C.R. Acad. Sci. Paris, série D, 267, 463–466.Google Scholar
Jonscher, A.K. (1996) Universal Relaxation Law. Chelsea Dielectric Press, London.Google Scholar
Komusinski, J., Stoch, L. & Dubiel, S.M. (1981) Application of electron paramagnetic resonance and Müssbauer spectroscopy in the investigation of kaolinite-group minerals. Clays Clay Miner. 29, 123–130.Google Scholar
Lacabanne, G., Lamure, A., Teyssedre, G., Bernes, A. & Mourges, M. (1994) Study of cooperative relaxation modes in complex systems by thermally stimulated current spectroscopy. J. Non-Cryst. Solids, 172-174, 887–890.Google Scholar
Mamy, J. (1968) Recherches sur Vhydratation de la Montmorillonite: Propriétés diélectriques et structure dufilm d'eau. Thèse ès sciences, Paris, France.Google Scholar
Olivier, D., Vedrine, J.C. & Pezerat, H. (1975) Application de la résonance paramagnétique électronique á la localisation du Fe dans les smectites. Bull. Gr.fr. Argiles, 27, 153–165.Google Scholar
Pinnavaia, T.J. (1981) Electron spin resonance studies of clay minerals. Pp. 139–161 in: Advanced Techniques for Clay Mineral Analysis (Fripiat, J.J., editor). Elsevier, New York.Google Scholar
Pollak, M. (1987) (Editor) Disordered Semi-Conductors. CRC, Boca Raton, FL, USA.Google Scholar
Salam, F., Soulayman, S.Sh., Giuntini, J.C. & Zanchetta, J.V. (1996) Frequency dependent ionic conductivity in (Ag2S)x(GeS2)1-x glasses. Sol. State Ionics, 83, 235–243.Google Scholar
Vanderschueren, J. & Gasiot, J. (1979) Field Induced Thermally Stimulated Current. Topics in Applied Physics, vol. 37, Springer-Verlag, Berlin.Google Scholar