Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T09:11:32.008Z Has data issue: false hasContentIssue false

Combining DLS, XRD, SEM-EDAX and EXAFS in the study of Zn(II) retention on a palygorskitic clay

Published online by Cambridge University Press:  09 July 2018

C. Aisa
Affiliation:
Departamento de Química Aplicada, Universidad Pública de Navarra, Campus Arrosadía, 31006, Pamplona
R. A. Alvarez-Puebla
Affiliation:
Departamento de Química Aplicada, Universidad Pública de Navarra, Campus Arrosadía, 31006, Pamplona
J. Blasco
Affiliation:
ICMA and Departamento de Física de la Materia Condensada, CSIC and Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
J. C. Echeverría
Affiliation:
Departamento de Química Aplicada, Universidad Pública de Navarra, Campus Arrosadía, 31006, Pamplona
J. J. Garrido*
Affiliation:
Departamento de Química Aplicada, Universidad Pública de Navarra, Campus Arrosadía, 31006, Pamplona
*

Abstract

Clay materials play a key role in determining the retention capacity of a soil, and are widely used in waste treatments. One of the most commonly used clays is palygorskite. The aim of this research is to determine the chemical species formed by Zn when retained in a palygorskitic clay material. Adsorption isotherm analysis is useful in studying the retention process, because it provides a macroscopic view of the retention phenomena. Complementary techniques are needed in order to study the different retention processes. Sorption isotherms of Zn on palygorskitic clay were carried out; the supernatant was analysed by means of dynamic light scattering (DLS) and the residues by using X-ray diffraction (XRD), scanning electron microscopy-energy dispersive angle X-ray (SEM-EDAX)analysis and extended X-ray absorption fine structure (EXAFS). Isotherm analysis shows that the global retention process could be due to the sum of two separate processes, adsorption and surface precipitation via solid-solution. This is supported by DLS, which shows that ζ potential increases as the Zn(II) is retained onto clay surfaces but remains constant during the precipitation process. The XRD pattern corresponding to the Zn-clay system showed weak new peaks, probably from zincite. The microanalysis by X-ray fluorescence of several spots selected for their different electronic densities indicated that the retained Zn was randomly distributed across the clay surface. Analysis by EXAFS supports the hypothesis of retention via adsorption and solid-solution surface precipitation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Puebla, R.A., Aisa, C., Blasco, J., Echeverría, J.C., Mosquera, B. & Garrido, J.J. (2004a) Copper heterogeneous nucleation on a palygorskitic clay. An XRD, EXAFS and molecular modeling study. Applied Clay Science, 25, 103110.CrossRefGoogle Scholar
Alvarez-Puebla, R.A., Valenzuela-Calahorro, C. & Garrido, J.J. (2004b) Cu(II) retention on a humic substance. Journal of Colloid and Interface Science, 270, 4755.CrossRefGoogle Scholar
Alvarez-Puebla, R.A., Valenzuela-Calahorro, C. & Garrido, J.J. (2004c) Retention of Co(II), Ni(II), and Cu(II) on a purified brown humic acid. Modeling and characterization of the sorption process. Langmuir, 20, 36573664.CrossRefGoogle Scholar
Alvarez-Puebla, R.A., Valenzuela-Calahorro, C. & Garrido, J.J. (2004d) Modeling the adsorption and precipitation processes of Cu(II) on humin. Journal of Colloid and Interface Science, 277, 55–61.Google Scholar
Binsted, N., Gurman, S.J., Campbell, J.W. & Stephenson, P. (1991) EXCURV Program. SERC, Daresbury Laboratory, UK.Google Scholar
Bradley, W.F. (1940) The structural scheme of attapulgite. American Mineralogist, 25, 405410.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.CrossRefGoogle Scholar
Dahn, R., Scheidegger, A.M., Manceau, A., Schlegel, M.L., Baeyens, B., Bradbury, M.H. & Chateigner, D. (2003) Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study. Geochimica et Cosmochimica Acta, 67, 1 – 15.Google Scholar
Echeverría, J.C., Churio, E. & Garrido, J.J. (2002) Retention mechanisms of Cd on illite. Clays and Clay Minerals, 50, 614623.CrossRefGoogle Scholar
Giles, C.H., Smith, D. & Huitson, A. (1974) A general treatment and classification of the solute adsorption isotherm. I: Theoretical. Journal of Colloid and Interface Science, 47, 755765.CrossRefGoogle Scholar
Humphries, D.W. (1992) The Preparation of Thin Sections of Rocks, Minerals and Ceramics. Royal Microscopical Society, Oxford University Press, UK.Google Scholar
JCDS (1986) Powder Diffraction File Sets 1-36. International Centre for Diffraction Data, Swarthmore, PA, USA.Google Scholar
Koningsberger, D.C. & Prins, R. (1988) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES. John Wiley and Sons, New York.Google Scholar
Lopez Ritas, J. & Lopez Melida, J. (1990) El Diagnostico de Suelos y Plantas. Metodos de Campo y Laboratorio. Mundi Prensa, Madrid.Google Scholar
Morera, M.T., Echeverria, J.C., Mazkiaran, C. & Garrido, J.J. (2001) Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113, 135144.CrossRefGoogle ScholarPubMed
Sanchez, M.C., Garcia, J., Mayoral, J.A., Blasco, J. & Proietti, M.G. (1994) Structural study of TilV exchanged KlO-montmorillonite by XRD, EXAFS and XANES. Journal of Molecular Catalysis, 92, 311324.CrossRefGoogle Scholar
Schlegel, M.L., Charlet, L. & Manceau, A. (1999a) Sorption of metal ions on clay minerals: II. Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability. Journal of Colloid and Interface Science, 220, 392405.CrossRefGoogle Scholar
Schlegel, M.L., Manceau, A., Chateigner, D. & Charlet, L. (1999b) Sorption of metal ions on clay minerals: I. Polarized EXAFS evidence for the adsorption of Co on the edges of hectorite particles. Journal of Colloid and Interface Science, 215, 140158.CrossRefGoogle Scholar
Singer, A. (1989) Palygorskite and sepiolite group minerals. Pp. 82–872 in: Minerals in Soil Environment. (J.B. Dixon, editor). Soil Science Society of America, Madison, Wisconsin.Google Scholar
Sposito, G. (1984) The Surface Chemistry of Soils. Oxford University Press, New York. Stumm, W. (1992) Chemistry of the Solid-water Interface. Wiley, New York.Google Scholar
Suàrez-Barrios, M. (1992) El Yacimiento de paligorskita de Bercimuel (Segovia): I. Mineralogía y génesis. II. Caracterización fisico-química del mineral y àctivacion dcida. Universidad de Salamanca, Spain.Google Scholar
Tohji, K., Udagawa, Y., Kawasaki, T. & Masuda, K. (1983) Laboratory EXAFS spectrometer with a bent crystal, a solid-state detector and a fast detection system. Review of Scientific Instruments, 54, 14821487.CrossRefGoogle Scholar
Valenzuela-Calahorro, C., Cuerda-Correa, E., Navarrete-Guijosa, A. & Gonzalez-Pradas, E. (2002a) Application of a single model to study the adsorption equilibrium of prednisolone on six carbonaceous materials. Journal of Colloid and Interface Science, 250, 6773.CrossRefGoogle Scholar
Valenzuela-Calahorro, C., Cuerda-Correa, E., Navarrete Guijosa, A. & Pradas, E.G. (2002b) Application of a single model to study the adsorption kinetics of prednisolone on six carbonaceous materials. Journal of Colloid and Interface Science, 248, 3340.CrossRefGoogle Scholar
Wells, A.F. (1984) Structural Inorganic Chemistry. Clarendon Press, Oxford, UK.Google Scholar