Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T14:06:36.783Z Has data issue: false hasContentIssue false

Clays and zeolite authigenesis in sediments from the flank of the Juan de Fuca Ridge

Published online by Cambridge University Press:  09 July 2018

M. D. Buatier*
Affiliation:
Département Géosciences, EA2642, UFR Sciences et Technique, Université de Franche Comté, 16 Route de Gray, 25065 Besançon
A. M. Karpoff
Affiliation:
EOST-CNRS UMR 7517, Centre de Géochimie de la Surface, 1 rue Blessig, 67084 Strasbourg
D. Charpentier
Affiliation:
G2R UMR 7566, Université H. Poincaré, BP 239, 54506 Vandoeuvre lès Nancy, France
*

Abstract

This study focuses on the mineralogical and chemical analysis of sediments overlying basaltic basement through which seawater circulates (ODP Leg 168, flank of the Juan de Fuca Ridge). A SEM and TEM-EDX study of the authigenic clays and zeolites allowed the characterization of the hydrothermal phases and the determination of their mechanism of formation. Silicate authigenesis related to hydrothermal alteration of sediment was observed in the sediment layer just above basement at sites located >30 km from the ridge axis. This sediment alteration is particularly intense at Site 1031 where authigenic formation of Fe-Mg- rich smectites (montmorillonite and saponite) and zeolites occur, linked to the dissolution of biogenic calcite. Vertical advection of basement fluid through the sediment column is required to produce this alteration. This process is still active at Site 1031, based on systematic variations in porewater profiles and temperatures obtained from stable isotopic data on calcium carbonates, and the nature of authigenic minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J. & Teagle, D.A.H. (1999) The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63, 15271535.Google Scholar
Alt, J., Honnorez, J., Laverne, C. & Emmerman, R. (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust. Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater-basalt interactions. Journal of Geophysical Research, 91, 309335.CrossRefGoogle Scholar
Aoki, S. & Kohyama, N. (1998) Cenozoic sedimentation and clay mineralogy in the northern part of the Magellan Trough, Central Pacific basin. Marine Geology, 148, 2137.CrossRefGoogle Scholar
Bernoulli, D., Garrison, R.E. & Mélières, F. (1978) Phillipsite cementation in a foraminiferal sandstone at Hole 373A and “the case of the violated foram”. Pp. 478482 in. Initial Reports DSDP, 42, (Hsü, K.J., Montadert, L. et al. , editors). US Government Printing Office, Washington D.C.Google Scholar
Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays and Clay Minerals, 20, 217223.Google Scholar
Boles, J.R. (1977) Zeolites in deep-sea sediments. Pp. 137163 in. Mineralogy and Geochemistry of Natural Zeol ites (Mumpton, F.A., editor). Mineralogical Society of America Short Course Notes, 4.CrossRefGoogle Scholar
Bonatti, E. (1981) Metal deposits in the oceanic lithosphere. Pp. 639686 in. The Oceanic Lithosphere (Emiliani, C., editor). The Sea, 7. Wiley & Sons, New York.Google Scholar
Böstrom, K. (1975) The origin and fate ferromanganoan active ridge sediments. Stockholm Contributions to Geology, 27, 149243.Google Scholar
Bourasseau, I. (1996) L’altération de la croû te océanique jurassique et la genèse des sédiments métallifères associ é s. PhD thesis , Univ. Louis Pasteur, Strasbourg, France.Google Scholar
Buatier, M., Honnorez, J. & Ehret, G. (1989) Fe-smectiteglauconite transition in hydrothermal green clays from the Galapagos Spreading Center, DSDP, Hole 509B. Clays and Clay Minerals 37, 532541.Google Scholar
Buatier, M., Früh-Green, G.L. & Karpoff, A.M. (1995) Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca). Contributions to Mineralogy and Petrology, 122, 134151.CrossRefGoogle Scholar
Buatier, M., Monnin, C., Früh-Green, G. & Karpoff, A.M. (2001) Fluid-sediment interactions related to hydrothermal circulation in the Eastern Flank of the Juan de Fuca Ridge. Chemical Geology, 175, 343360 Google Scholar
Cann, J.R. (1979) Metamorphism in the ocean crust. Pp. 230238 in. Deep Drilling Results in the Atlantic Ocean: Ocean Crust (Talwani, M., Harisson, C.G. & Hayes, D.E., editors). AGU M. Ewing Series, 2. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
Cliff, G. & Lorimer, W.G. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203207.Google Scholar
Daesslé, L.W., Cronan, D.S., Marchig, V. & Wiedicke, M. (2000) Hydrothermal sedimentation adjacent to the propagating Valu Fa Ridge, Lau Basin, S.W. Pacific. Marine Geology, 162, 479500.Google Scholar
Davis, E.E., Fischer, A.T., Firth, J.V. et al. (1997) Proceedings ODP, Initial Reports, 168, College Station, Texas, (Ocean Drilling Program).Google Scholar
Elderfield, H., Wheat, C.G., Mottl, M.J., Monnin, C. & Spiro, B. (1999) Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca ridge. Earth and Planetary Science Letters, 172, 151165.CrossRefGoogle Scholar
Elsass, F., Beaumont, A., Pernes, M., Jaunet, A.M. & Tessier, D. (1998) Changes in layer organization of Na and Ca exchanged smectite during solvent exchange for embedment in resin. Canadian Mineralogist, 36, 13251333.Google Scholar
Galli, E. & Ghittoni, A.G.L. (1972) The crystal chemistry of phillipsites. American Mineral ogi st, 57, 11251145.Google Scholar
Giambalvo, E.R., Fisher, A., Martine, J.T., Darty, L. & Lowell, R.P. (2000) Origin of elevated sediment permeability in a hydrothermal seepage zone, eastern flank of the Juan de Fuca Ridge, and implications for transport of fluid and heat. Journal of Geophysical Research, 105, 913927.Google Scholar
Giorgetti, G., Marescotti, P., Cabella, R. & Lucchetti, G. (2001) Clay mineral mixtures as alteration products in pillow basalts from the eastern flank of Juan de Fuca Ridge: a TEM-AEM study. Clay Minerals, 36, 7591.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1993) The beidellite-sapo nite series: an experimental approach. European Journal of Mineralogy, 5, 623635.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1994) The nontronite-saponite series: an experimental approach. European Journal of Mineralogy, 6, 99112.CrossRefGoogle Scholar
Honnorez, J. (1981) The aging of the oceanic crust at low temperature Pp. 525597 in. The Oceanic Lithosphere (Emiliani, C., editor). The Sea, 7. Wiley & Sons, New York.Google Scholar
Honnorez, J., Karpoff, A.M. & Trauth-Badaut, D. (1983) Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, Holes 506, 506C and 507D Deep Sea Drilling Project Leg 70. Pp. 221224 in. Initial Reports DSDP, 70(Honnorez, J., Von Herzen, R.P. et al. , editors). US Government Printing Office, Washington, D.C.Google Scholar
Humphris, S.E., Thompson, R.N. & Marriner, G.F. (1980) The mineralogy and geochemistry of basalt weathering, Holes 417A and 418A. Pp. 12011218 in. Initial Reports DSDP, 51, 52, 53, (Donnelly, T., Francheteau, J. et al. , editors). US Government Printing Office, Washington, D.C.Google Scholar
Inoue, A. (2000) Two-dimensional variations of exchangeable cation composition in the terrigenous sediment, eastern flank of the Juan de Fuca Ridge. Marine Geology, 162, 501528.CrossRefGoogle Scholar
Karpoff, A.M. (1989) Les faciès pélagiques condensés des Océans Pacifique et Atlantique: témoins des grandes crises géodynamiques. Doc. ès Sci. thesis, ULP, Strasbourg, France.Google Scholar
Karpoff, A.M., France-Lanord, C., Lothe, F. & Karcher, P. (1992) Miocene tuff from Mariana Basin, Leg 129, Site 802: a first deep-sea occurrence of thaumasite. Pp. 119135 in: Proceedings ODP, Scientific Results, 129(Larson, R.L., Lancelot, Y. et al. , editors). College Station, Texas (Ocean Drilling Program).Google Scholar
Kastner, M. (1981) Authigenic silicates in deep-sea sediments: formation and diagenesis. Pp. 915980 in. The Oceanic Lithosphere (Emiliani, C., editor). The Sea, 7. Wiley & Sons, New York.Google Scholar
Laverne, C., Honnorez, J. & Alt, J. (1989) Transition entre l’altération à basse température et l’altération hydrothermale de la croû te océanique: étude pétrographique et géochimique du puits 504B, Est Pacifique. Bulletin de la Socié té Géologique de France, 8, 327337.Google Scholar
Lee, C.H. & Lee, S.-R. (1998) Authigenic phillipsite in deep-sea manganese nodules from the Clarion- Clipperton area, NE equatorial Pacific. Marine Geology, 148, 125133.Google Scholar
Marchig, V., von Stackelberg, U., Wiedicke, M., Durn, G. & Milovanovic, D. (1999) Hydrothermal activity associated with off-axis volcanism in the Peru basin. Marine Geology, 159, 179203.Google Scholar
Marescotti, P., Vanko, D.A. & Cabella, R. (2000) From oxidizing to reducing alteration: mineralogical variations in pillow basalts from the eastern flank, Juan de Fuca Ridge. Pp. 119136 in. Proceedings ODP, Scientific Results, 168, (Fisher, A.T., Davis, E.E. & Escudia, C., editors). College Station, Texas (Ocean Drilling Program).Google Scholar
Monnin, C., Karpoff, A.M. & Buatier, M. (2000) Calcium carbonate stability in the sediments of the Eastern flank of the Juan de Fuca Ridge. Pp. 95104 in. Proceedings ODP, Scientific Results, 168 (Fisher, A.T., Davis, E.E. & Escudia, C., editors). College Station, Texas (Ocean Drilling Program).Google Scholar
Mottl, M.J. & Wheat, C.G. (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochimica et Cosmochimica Acta, 58, 22252237.Google Scholar
Mottl, M.J., Wheat, G., Baker, E., Becker, N., Davis, E., Feely, R., Grehan, A., Kadko, D., Lilley, M., Massoth, G., Moyer, C. & Sansone, F.J. (1998) Warm springs discovered on 3.5 Ma crust, eastern flank of the Juan de Fuca Ridge. Geology, 26, 5154.Google Scholar
Nähr, T.H. & Bohrmann, G. (1999) Barium-rich authigenic clinoptilolite in sediments from the Japan Sea a sink for dissolved barium. Chemical Geology, 158, 227244.Google Scholar
Ogihara, S. (1994) Ba-bearing clinoptilolite from ODP Leg 127, Site 795, Japan Sea. Clays and Clay Minerals, 4, 482484.Google Scholar
Petzing, J. & Chester, R. (1979) Authigenic marine zeolites and their relation to global volcanism. Marine Geology, 29, 253271.Google Scholar
Porter, S., Vanko, D.A. & Ghazi, A.M. (2000) Major and trace element compositions of secondary saponite and celadonite in basalts altered at low temperature, eastern flank of the Juan de Fuca Ridge. Pp. 149167 in. Proceedings ODP, Scientific Results, 168 (Fisher, A., Davis, E.E. & Escutia, C., editors). College Station, Texas (Ocean Drilling Program).Google Scholar
Rona, P.A., Thompson, G., Mottl, M.J., Karson, J.A., Jenkins, W.J., Graham, D., Malette, M., Von Dam, K. & Edmond, J.M. (1984) Hydrothermal activity at the transatlantic Geotraverse hydrothermal field, mid Atlantic ridge crest at 26°N. Journal of Geophysical Research, 89, 1136511377.CrossRefGoogle Scholar
Siever, R. (1979) Plate tectonic controls on diagenesis. Journal of Geology, 97, 127155.Google Scholar
Singer, A., Stoffer, P., Heller-Kallai, L. & Szfranek, D. (1984) Nontronite in a deep-sea core from the south Pacific. Clays and Clay Minerals, 32, 375383.CrossRefGoogle Scholar
Tessier, D. (1984) Hydratation, gonflement et structuration des matériaux argileux au cours de la dessication et la réhumectation. Doc. ès Sci. thesis, Univ. Paris & INRA Versailles, France.Google Scholar
Wheat, C.G., Mottl, M.J., Baker, E.T., Feely, R.A., Lupton, J.E., Sansone, F.J., Resing, J.A., Lebon, G.T. & Backer, N.C. (1997) Chemical plumes from low-temperature hydrothermal venting on the eastern flank of the Juan de Fuca Ridge. Journal of Geophysical Research, B, 102, 1543315446.Google Scholar
Wirsching, U. (1981) Experiments on the hydrothermal formation of calcium zeolites. Clays and Clay Minerals, 29, 171183.CrossRefGoogle Scholar