Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T03:47:21.091Z Has data issue: false hasContentIssue false

Clay transformations following a leaching experiment on an acid brown soil

Published online by Cambridge University Press:  09 July 2018

M.-P. Turpault
Affiliation:
INRA, Cycles Biogéochimiques, 54280 Champenoux, France
Q. Ponette
Affiliation:
INRA, Cycles Biogéochimiques, 54280 Champenoux, France
S. Belkacem
Affiliation:
INRA, Cycles Biogéochimiques, 54280 Champenoux, France
C. Nys
Affiliation:
INRA, Cycles Biogéochimiques, 54280 Champenoux, France

Abstract

The chemical and mineralogical properties of the A1 and B horizons of an acid brown soil (typic Dystrochrept) were compared before and after a 20 month column leaching experiment. At the end of the leaching period, the organic carbon content of the A1 horizon had decreased by ∼20% compared with the original horizon. In the leached A1 horizon, the vermiculite layers of both the vermiculite and interstratified minerals were transformed into high-charge expanding layers, with the charge mainly located in the octahedral sheet. The inhibition of expansion properties by pretreatment with dithionite-citrate-bicarbonate (DCB) was explained by an increase in total layer charge induced by Fe reduction. In the B horizon, leaching resulted in a loss of sesquioxide materials, especially in the interlayers of vermiculites. In both horizons, the amounts of Al extracted by Na citrate and the amounts of Fe extracted by DCB decreased. Analysis of solution composition showed that Al mobilization was closely associated with NO3 leaching.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belkacem, S. (1993) Etude de la resaturation des sols acides soumis a de forts apports acides: effet des formes et doses d'amendements sur le fonctionnement d'un sol acide forestier. Thèse, Univ. Nancy I, France.Google Scholar
Belkacem, S. & Nys, C. (1995) Consequences of liming and gypsum top-dressing on nitrogen and carbon dynamics in acid forest soils with different humus forms. Plant Soil 173, 7988.Google Scholar
Boutin, R. & Robitaille, G. (1989) Effets de l'acidification in vitro d'un podzol sur la chimie des percolats et des horizons. Information report LAU-X-91, Forestry Canada, Quebec region, Laurentian Forestry Centre.Google Scholar
David, M.B., Vance, G.F. & Fasth, W.J. (1991) Forest soil response to acid and gait additions of sulfate: II aluminum and base cations. Soil Sci. 151, 208–219.Google Scholar
Douglas, M.L. (1982) Smectites in acidic soils. Proc. Int. Clay Conf, Bologna & Pavia, 635-640.Google Scholar
Gjems, O. (1967) Studies on clay minerals and clay minerals formation in soil profiles in Scandinavia. Med. Nor. Skogsforsoksvesen, 21, 303415.Google Scholar
Greene-Kelly, R. (1953) Irreversible dehydratation in montmorillonite. Clay Miner. Bull. 2, 52–56.Google Scholar
James, B.R. & Riha, S.J. (1989) Aluminum leaching by mineral acids in forest soils: I. Nitric-sulfuric acid differences. Soil Sci. Soc. Am. J. 53, 259264.CrossRefGoogle Scholar
Jeanroy, E. (1983) Diagnostic des formes dufer dans les pédogenèses tempérées. Evaluation par les réactifs chimiques d'extraction et apports de la spectrométrie Mossbauer. Thése, Univ. Nancy I, France.Google Scholar
Lagaly, G. & Weiss, A. (1969) Determination of layer charge in mica-type layer silicates. Proc. Int. Clay Conf Tokyo, 61-80.Google Scholar
Liu, K.H., Mansell, R.S. & Rhue, R.D. (1990) Cation removal during application of acid solutions into airdry soil columns. Soil Sci. Soc. Am. J. 54, 17471753.Google Scholar
Malla, P.B. & Douglas, L.A. (1987a) Identification of expanding layer silicates: layer charge vs. expansion properties. Proc. Int. Clay Conf, Denver, 277–283.Google Scholar
Malla, P.B. & Douglas, L.A. (1987b) Layer charge properties of smectites and vermiculites: tetrahedral vs. octahedral. Soil Sci. Soc. Am. J. 51, 13621366.Google Scholar
McKeague, J.C., Brydon, J.E. & Miles, N.M. (1971) Differentiation of extractable iron and aluminum in soils. Soil Sci. Soc. Amer. Proc. 35, 3338.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp, 249-359 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors) Miner. Soc., London.Google Scholar
Righi, D. & Meunier, A. (1991) Characterization and genetic interpretation of clays in an acid brown soil (dystrochrept) developed in a granitic saprolite. Clays Clay Miner. 5, 519530.Google Scholar
Righi, D., Ranger, J. & Robert, M. (1988) Clay minerals as indicators of some soil forming processes in the temperate zone. Bull. Mineral. 111, 625–632.Google Scholar
Runge, M. (1974) Die Stickstoff-Mineralisation im Boden eines Sauerhumus-Buchenwaldes: I. Mineralstickstoff-Gehalt und Netto-Mineralisation. Oecol. Plant. 9, 201218.Google Scholar
Salmon, R.C. (1964) Cation-activity ratios in equilibrium soil solutions and the availability of magnesium. Soil Sci. 98, 213221.Google Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water, content of aluminous smectites. Clays Clay Miner. 17, 115149.CrossRefGoogle Scholar
Smith, C.J., Goh, K.M., Bond W,J. & Freney, J.R. (1995) Effects of organic and inorganic calcium compounds on soil-solution pH and aluminium concentration. E. J. Soil Sci. 46, 5363.CrossRefGoogle Scholar
Stucki, J.W., Low, P.F., Roth, C.B. & Golden, D.C. (1984) Effects of oxidation state of octahedral iron on clay swelling. Clays Clay Miner. 32, 357362.Google Scholar
Tamm, O. (1922) Um best amning ow de oorganiska kompenterna i markens gelcomplex. Meddn. Starens SkogsfokAnst, 19, 385404.Google Scholar
Tamura, T. (1958) Identification of clays minerals from acid soils. J. Soil Sci. 9, 141147.Google Scholar
Trtiby, P. (1989) Eine Titrationsmethode zur simultanen Bestimmung von H+ und Aluminium in NH4Cl Bodenextrakten. Z. Pflanzenernähr. Bodenk. 152, 297300.Google Scholar
USDA (1992) Keys to Soil Taxonomy. 5th edn. Technical Monograph 19, Soil Management Support Service. Pocahontas Press, Blacksburg, VA.Google Scholar
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proc. Int. Clay Conf., Denver, 167-173.Google Scholar