Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:36:33.578Z Has data issue: false hasContentIssue false

Clay resources in the Nelas region (Beira Alta), Portugal. A contribution to the characterization of potential raw materials for prehistoric ceramic production

Published online by Cambridge University Press:  09 July 2018

R. Marques*
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
A. Jorge
Affiliation:
University of Sheffield, Department of Archaeology, Northgate House, West Street, Sheffield S1 4ET, UK
D. Franco
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
M. I. Dias
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
M. I. Prudêncio
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
*

Abstract

Mineralogical and chemical compositions of residual and sedimentary clays (bulk and <2 μm fraction) from the Nelas region (schist, aplite-pegmatites, granites and Tertiary sediments from both Mondego River margins), Portugal, were studied, aiming to establish indicators for raw materials in ancient ceramic provenance studies. The mineralogy of bulk material does not provide a clear distinction between samples. Among clay minerals, kaolinite dominates, except in the aplite-pegmatites where illite prevails. Smectite was only found in sediments of the left river bank.

A more successful result was the geochemical differentiation of clay types. The weathered schist presents greater enrichment in Cr, whereas the clay fraction of aplite-pegmatites shows enrichment in all the chemical elements studied. The sediments and weathered granites are not easy to differentiate; the best geochemical indicators are U (lower contents in clay-size fraction of sediments) and REE patterns in both bulk and clay-size fraction.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, D.E., Neff, H. & Glascock, M.D. (2000) Testing assumptions about neutron activation analysis: communities, workshops and paste preparation in Yucatan, Mexico. Archaeometry, 42, 301316.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society Monograph 5, London.CrossRefGoogle Scholar
Buxeda i Garrigós, J. (1999) Alteration and contamination of archaeological ceramics: the perturbation problem. Journal of Archaeological Science, 26, 295313.CrossRefGoogle Scholar
Buxeda i Garrigós, J., Cau Ontiveros, M.A. & Kilikoglou, V. (2003) Chemical variability in clays and pottery from a traditional cooking pot production village: testing assumptions in Pereruela. Archaeometry, 45, 117.CrossRefGoogle Scholar
Charoy, B., Noronha, F. & Lima, A. (2001) Spodumene-petalite-eucryptite: mutual relationships and pattern of alteration in Li-rich aplite-pegmatite dykes from northern Portugal. The Canadian Mineralogist, 39, 729746.CrossRefGoogle Scholar
Compton, J.S., White, R.A. & Smith, M. (2003) Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chemical Geology, 201, 239255.CrossRefGoogle Scholar
Cunha, P.P. (2000) Litostratigrafia do Terciario da regiao Miranda do Corvo-Viseu (Bacia do Mondego, Portugal). Ciêndas da Terra, 14, 131146.Google Scholar
Day, P.M., Kiriatzi, E., Tsolakidou, A. & Kilikoglou, V. (1999) Group therapy in Crete: a comparison between analyses by NAA and thin-section petrography of early Minoan pottery. Journal of Archaeological Science, 26, 10251036.CrossRefGoogle Scholar
Dias, M.I. & Prudêncio, M.I. (2007) Neutron activation analysis of archaeological materials: an overview of the ITN NAA laboratory, Portugal. Archaeometry, 49, 383393.Google Scholar
Dias, M.I. & Prudêncio, M.I. (2008) On the importance of using scandium to normalize geochemical data preceding multivariate analyses applied to archaeometric pottery studies. Microchemical Journal, 88, 136141.CrossRefGoogle Scholar
Dias, M.I., Prudêncio, M.I., Goncalves, M.A. & Sequeira Braga, M.A. (2000) Geochemical and mineralogical diversity of clay materials in Fornos de Algodres region (central Portugal) and its implications on provenance studies of ancient ceramics. Pp. 237244 in: Proceedings of the 1st Latin American Clay Conference (extended abstracts), 2. Funchal, Portugal.Google Scholar
Dias, M.I., Prudêncio, M.I., Valera, A.C., Sequeira Braga, M.A. & Gouveia, M.A. (2002) Provenance and technology of pre-historic pottery from Fornos de Algodres (Portugal): the Fraga da Pena archaeological site. Pp. 253263 in: Modern Trends in Scientific Studies on Ancient Ceramics (Kilikoglou, V., Hein, A. & Maniatis, Y., editors), BAR International Series 1011. Archaeopress, Oxford.Google Scholar
Dias, M.I., Prudêncio, M.I. & Gouveia, M.A. (2003) Geochemical study of clay materials in Fornos de Algodres region (central Portugal) in an archaeometric view. Pp. 6570 in: A Clay Odyssey (Dominguez, E., Mas, G. & Cravero, F., editors). Elsevier, Bahia Blanca.Google Scholar
García, J.L.I. & Muñoz, B.E.L. (2002) Bromine determination by neutron activation analysis and its distribution in the atmosphere. Journal of Radio analytical and Nuclear Chemistry, 253, 531536.CrossRefGoogle Scholar
Gouveia, M.A., Prudêncio, M.I., Freitas, M.C., Martinho, E. & Cabral, J.M.P. (1987) Interference from uranium fission products in the determination of rare earths, zirconium and ruthenium by instrumental neutron activation analysis in rocks and minerals. Journal of Radio analytical and Nuclear Chemistry, 114, 309318.Google Scholar
Gouveia, M.A., Prudêncio, M.I., Morgado, I. & Cabral, J.M.P. (1992) New data on the GSJ reference rocks JB-la and JG-la by instrumental neutron activation analysis. Journal of Radio analytical and Nuclear Chemistry, 158, 115120.Google Scholar
Gouveia, M.A., Prudêncio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenborgh, J.C., Morgado, I., Pena, T. & Lopes, A. (1993) Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal. Chemical Geology, 107, 293298.CrossRefGoogle Scholar
Govindaraju, K. (1994) Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18.CrossRefGoogle Scholar
Hein, A., Tsolakidou, A. & Mommsen, H. (2002) Mycean pottery from the Argolid and Achiata — a mineralogical approach where chemistry leaves unanswered questions. Archaeometry, 44, 177198.CrossRefGoogle Scholar
Kabata-Pendias, A. (2001) Trace Elements in Soils and Plants. CRC Press, Inc., Boca Raton, Florida, USA, 413 pp.Google Scholar
Marques, R. (2007) Geoquimica e mineralogia de argilas do Cretdcico de Taveiro e Aveiro, Portugal. MSc. thesis, University of Aveiro. Portugal.Google Scholar
Martinho, M.A., Gouveia, M.A., Prudêncio, M.I., Reis, M.F. & Cabral, J.M.P. (1991) Factor for correcting the ruthenium interference in instrumental neutron activation analysis of barium in uraniferous samples. Applied Radiations and Isotopes, 42, 10671071.CrossRefGoogle ScholarPubMed
Mommsen, H. (2001) Provenance determination of pottery by trace element analysis: problems, solutions and applications. Journal of Radioanalytical and Nuclear Chemistry, 247, 657662.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd edition. Oxford University Press, 378 pp.Google Scholar
Morin, G. & Calas, G. (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97-101.Google Scholar
Prudêncio, M.I. & Cabral, J.M.P. (1988) Rare earth and other trace elements in Cretaceous clays from central Portugal. Journal of Radioanalytical and Nuclear Chemistry, 123, 309320.CrossRefGoogle Scholar
Prudêncio, M.I., Gouveia, M.A. & Cabral, J.M.P. (1986) Instrumental neutron activation analysis of two French geochemical reference samples — basalt BR and biotite mica-Fe. Geostandards Newsletter, 10, 2931.CrossRefGoogle Scholar
Prudêncio, M.I., Figueiredo, M.O. & Cabral, J.M.P. (1989) Rare earth distribution and its correlation with clay mineralogy in the clay-sized fraction of Cretaceous and Pliocene sediments (central Portugal). Clay Minerals, 24, 6774.CrossRefGoogle Scholar
Prudêncio, M.I., Gouveia, M.A. & Sequeira Braga, M.A. (1995) REE distribution in actual and ancient surface environments of basaltic rocks (central Portugal). Clay Minerals, 30, 239248.CrossRefGoogle Scholar
Prudêncio, M.I., Sequeira Braga, M.A., Oliveira, F., Dias, M.I., Delgado, M. & Martins, M. (2006) Raw material sources for the Roman Bracarense ceramic (NW Iberian Peninsula). Clays and Clay Minerals, 54, 639651.CrossRefGoogle Scholar
Prudêncio, M.I., Dias, M.I., Ruiz, F., Waerenborgh, J.C., Duplay, J., Marques, R., Franco, D., Ben Ahmed, R., Gouveia, M.A. & Abad, M. (2010) Soils in the semiarid area of the El Melah Lagoon (NE Tunisia) — variability associated with a closing evolution. Catena, 80, 922.CrossRefGoogle Scholar
Rocha, F.T. (1993) Argilas aplicadas a estudos litoes-tratigráficos e paleoambientais na bacia sedimentar de Aveiro. PhD. Thesis. University of Aveiro, Portugal.Google Scholar
Schultz, L.G. (1964) Quantitative Interpretation of Mineralogical Composition, X-ray and Chemical Data for the Pierre Shale. U.S. Geological Survey, Professional Paper, 391-C, 31pp.Google Scholar
Senna-Martinez, J.C. (1995) The late prehistory of central Portugal: a first diachronic view. Pp. 6494 in: The Origins of Complex Societies in Late Prehistoric Iberia (Lillos, K., editor), International Monographs in Prehistory.Google Scholar
Senna-Martinez, J.C. (1995/96) Pastores, recolectores e construtores de megálitos na plataforma do Mondego no IV e III milánios AC: (1) O sítio de habitat do Ameal VI. Pp. 83122 in. Trabalhos de Arqueologia da EAM, 3, Lisboa, Colibri.Google Scholar
Silva, M.M.V.G., Neiva, A.M.R. & Whitehouse, M.J. (2000) Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos, 50, 153170.CrossRefGoogle Scholar
Speakman, R.J. & Glascock, M.D. (2007) Acknowledging fifty years of neutron activation analysis in archaeology. Archaeometry, 49, 179183.Google Scholar
Thorez, J. (1976) Pratical Identification of Clay Minerals. G. Lelotte. Dison, Belgium.Google Scholar
Valera, A.C. (1993) A Corujeira, Canas de Senhorim: vestigios de uma ocupação calcolítica. Trabalhos de Arqueologia da EAM, 1, 2938. Lisboa, Colibri.Google Scholar
Valera, A.C. (1994) Murganho I. Intervenção de emergência numa área de eucaliptal. Pp. 105115 in. Adas das V Jornadas Arqueológicas daA.A.P., 1 (Henriques, A.P. & Barroso, M.S., editors).Google Scholar
Zachara, J.M., Smith, S.C., Liu, C., Mckinley, P., Serne, R.J. & Gassman, P.L. (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochimica et Cosmochimica Ada, 66, 193211.CrossRefGoogle Scholar