Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T08:34:44.378Z Has data issue: false hasContentIssue false

Clay minerals from Permo-Carboniferous very low-grade metamorphic rocks from the central part of the Fore Sudetic Monocline (western Poland)

Published online by Cambridge University Press:  09 July 2018

E. T. Sokalska*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
E. Dubińska
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
G. Kaproń
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
J. A. Kozubowski
Affiliation:
Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
M. Walski
Affiliation:
Department of Cell Ultrastructure, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
*

Abstract

The mafic rocks from boreholes studied here contain the assemblage typical for upper-subgreenschist to lower-greenschist facies (albite, chlorite, illite, titanite, quartz, Ti-oxide ± actinolite) as well as relict clinopyroxene.Metapelites underlying a metabasic rock sequence also record metamorphic alteration as demonstrated by the chlorite and illite crystallinities. Chlorite crystallinity suggests formation in conditions close to the subgreenschist/greenschist facies boundary, but this mineral is partly decomposed during metamorphic retrogression.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

árkai, P., Mata, P., Giorgetti, G., Peacor, D.R. & Tóth, M. (2000) Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study. Journal of Metamorphic Geology, 18, 531550.Google Scholar
árkai, P., Fenninger, A. & Nagy, G. (2002a) Effects of lithology and bulk chemistry on phyllosilicate reaction progress in the low-T metamorphic Graz Paleozoic, Eastern Alps, Austria. European Journal of Mineralogy, 14, 673686.CrossRefGoogle Scholar
árkai, P., Ferreiro Mählmann, R., Šucha, V., Bologh, K., Skorova, I. & Frey, M. (2002b) Possible effects of tectonic shear strain on phyllosilicates: a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 272290.Google Scholar
Benek, R., Kramer, W., McCann, T., Scheck, M., Negendank, J.F.W., Korich, D., Huebscher, H.-D. & Bayer, U. (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics, 266, 379404.CrossRefGoogle Scholar
Breitkreuz, C. & Kennedy, A. (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics, 302, 307326.Google Scholar
Brindley, G.W. & de Souza, J.V. (1975) A golden-colored, ferri-nickel chloritic mineral from Morro do Niquel, Minas Gerais, Bresil. Clays and Clay Minerals, 23, 1115.CrossRefGoogle Scholar
Bylina, P. (2006) Low-grade metamorphism of Permian mafic rocks from the Gorzów Wielkopolski block (Fore Sudetic Monocline, NW Poland): age and mechanism. Mineralogia Polonica, 37, 349.CrossRefGoogle Scholar
Carnicelli, S., Mirabella, A., Cecchini, G. & Sanesi, G. (1997) Weathering of chlorite to a low-charge expandable mineral in a spodosol on the Appenine Mountains, Italy. Clays and Clay Minerals, 45, 2841.CrossRefGoogle Scholar
Churchman, G.J. (1980) Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Minerals, 15, 5976.CrossRefGoogle Scholar
Drits, V.A. & Sakharov, B.A. (1976) X-ray structural analysis of mixed-layer minerals. Transactions of the Academy of Sciences U.S.S.R., 295, 1252 (in Russian).Google Scholar
Dubińska, E., Bagiński, B., Kaproń, G. & Bylina, P. (1998) Pumpellyit w zmienionych zasadowych skałach wulkanicznych z okolic Gorzowa Wielkopolskiego (pólnocno-zachodnia część monokliny przedsudeckiej): przejawy metamorfizmu bardzo niskiego stopnia (VLGM). Przeglad Geologiczny, 46.Google Scholar
Dubinska, E., Bylina, P., Bagiński, B., Kaproń, G. & Kozłowski, A. (2004) Geochemistry and mineralogy of Rotliegend metavolcanic mafic rocks from Poland: pervasive low-grade metamorphism versus parent rock signature. Pp. 393413 in. Permo—Carboniferous Magmatism and Rifting in Europe (Wilson, M., Neumann, E.-R., Dacies, G.R., Timmerman, M.J., Heeremans, M. & Larsen, B.T., editors). Special Publication, 223, Geological Society of London.Google Scholar
Goll, M., Lippolt, H.J. & Hoefs, J. (2003) Mesozoic alteration of Permian volcanic rocks (Thiiringer Wald, Germany): Ar, Sr, and O isotope evidence. Chemical Geology, 199, 209231.Google Scholar
Harris, W.G., Hollien, K.A., Bates, S.R. & Acree, W.A. (1992) Dehydration of hydroxy-interlayered vermiculite as a function of time and temperature. Clays and Clay Minerals, 40, 335340.CrossRefGoogle Scholar
Himmelberg, G.R., Brew, D.A. & Ford, A.B. (1995) Low-grade, Ml metamorphism of the Douglas Island Volcanics, western metamorphic belt near Juneau, Alaska. Geological Society of America Special Paper, 296, 5166.CrossRefGoogle Scholar
Jackowicz, E. (1994) Permskie skaly wulkaniczne polnocnej czesci monokliny przedsudeckiej. Prace Pahstwowego Instytutu Geologicznego, 145, 143.Google Scholar
Jackowicz, E. (1995) Lower Rotliegend volcanic rocks from the western part of the Polish Lowland. Terra Nostra, 7, 6769.Google Scholar
Jasinowski, M., Durakiewicz, T. & Peryt, T.M. (2000) Rafy wapienia cechsztynskiego (Cal) na wyniesieniu wolsztynskim w swietle badan stabilnych izotopow tlenu i wggla. Przeglad Geologiczny, 48, 468.Google Scholar
Karnkowski, P.H. (1987) Litostratygrafia czerwonego spagowca w Wielkopolsce. Kwartalnik Geologiczny, 31, 634672.Google Scholar
Karnkowski, P.H. (1994) Rotliegend lithostratigraphy in the central part of the Polish Permian Basin. Geological Quarterly, 38, 2742.Google Scholar
Karnkowski, P.H. (1999) Origin and evolution of the Polish Rotliegend Basin. Polish Geological Institute Special Papers, 3, 193.Google Scholar
Krumm, S. (1994) WINFTT1.0 - a public domain program for interactive profile-analysis under WINDOWS. - XHIth Conference on Clay Mineralogy and Petrology, Praha 1994. Ada Universitatis Carolinae Geologica, 38, 253261.Google Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linghout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. & Guo, Y.Z. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles on the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219246.Google Scholar
Lee, M., Aronson, J.L. & Savin, S.M. (1989) Timing and conditions of Permian Rotliegende Sandstone diagenesis, Southern North Sea: K/Ar and oxygen isotopic data. American Association of Petroleum Geologists Bulletin, 73, 195215.Google Scholar
Liewig, N. & Clauer, N. (2000) K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Minerals, 35, 271281.Google Scholar
Lippolt von, H.J., Raczek, I. & Schleicher, H. (1982) Isotopenalter (40Ar/39Ar; Rb-Sr) eines Unteren Rotliegend-Biotits aus der Bohrung Wrzesnia/Polen). Mitteilung aus dem Laboratorium fur Geochronologie der Universität Hellderberg. Der Aufschluß, 33, 1325.Google Scholar
Maliszewska, A. (1997) Wiek K/Ar włóknistego illitu z piaskowców czerwonego spagowca Wielkopolski. Datowanie Minerałów i Skał; IV Ogólnopolska Sesja Naukowa. UCMS Lublin, 11-12.12.1997, 5055.Google Scholar
Maliszewska, A. (1999) O znaczeniu badań izotopowych diagenetycznego illitu z piaskowców czerwonego spagowca. Przeglad Geologiczny, 47, 476.Google Scholar
Mering, J. (1949) X-ray diffraction in disordered layer structures. Ada Crystallographica, 2, 371377.Google Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very low-grade metamorphism in metapelitic rocks. Pp. 61107 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science Ltd., Oxford, U.K. Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science Ltd., Oxford, UK.Google Scholar
Meyer, M., Brockamp, O., Clauer, N., Renk, A. & Zuther, M. (2000) Further evidence for a Jurassic mineralizing event in central Europe: K-Ar dating of hydrothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest, Germany. Mineralium Deposita, 35, 754761.Google Scholar
Murakami, T., Isobe, H., Sato, T. & Ohnuki, T. (1996) Weathering of chlorite in a quartz-chlorite schist. 1. Mineralogical and chemical changes. Clays and Clay Minerals, 44, 244256.Google Scholar
Nasdala, L., Gotze, J., Pidgeon, R.T., Kempe, U. & Seifert, T. (1998) Constraining a SHRIMP U-Pb age: microscale characterization of zircons from Saxonian Rotliegend rhyolites. Contributions to Mineralogy and Petrology, 132, 300306.Google Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega Huertas, M. (1994) Regional retrograde alteration of sub-green-shist facies chlorite to smectite. Contributions to Mineralogy and Petrology, 115, 243252.Google Scholar
Nieto, F., Pilar Mata, M., Bauluz, B., Giorgetti, G., árkai, P. & Peacor, D.R., (2005) Retrograde diagenesis, a widespread process on a regional scale. Clay Minerals, 40, 93104.Google Scholar
Obst, K., Katzung, G. & Hammer, J. (1999) Dating of the Late Autunian basic magmatism in the Thuringian Forest. Neues Jahrbuch für Geologie und Palaontologie, 1, 110.Google Scholar
Plein, E. (1993) Bemerkungen zum Ablauf der paläogeographischen Entwicklung in Stefan und Rotliegend des Norddeutschen Beckens. Geologische Jahrbuch, A 131, 99116.Google Scholar
Pokorski, J. (1978) Zarys rozwoju basenu czerwonego spagowca na obszarze Nizu Polskiego. Przeglad Geologiczny, 26, 686693.Google Scholar
Rich, C.I. (1968) Hydroxy interlayers in expansible layer silicates. Clay Minerals, 16, 1530.Google Scholar
Righi, D., Petit, S. & Bouchet, A. (1993) Characterisation of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a Cryorthod. Clays and Clay Minerals, 41, 484495.Google Scholar
Robinson, D. & Bevins, R.E. (1999) Patterns of regional low-grade metamorphism in metabasites. Pp. 143168 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science Ltd., Oxford, UK.Google Scholar
Robinson, D. & Merriman, R.J. (1999) Low-temperature metamorphism: an overview. Pp. 19 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editorsj Blackwell Science Ltd., Oxford, UK.Google Scholar
Romer, R.L., Forster, H.-J. & Breitkreuz, C. (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contributions to Mineralogy and Petrology, 141, 201221.Google Scholar
Ruiz Cruz, M.D. (1999) New data for metamorphic vermiculite. European Journal of Mineralogy, 11, 533548.Google Scholar
Ruiz Cruz, M.D. (2003) Two stages of ‘metamorphic vermiculite’ growth in schists from the Malaguide Complex, Betic Coldillera, Spain. The Canadian Mineralogist, 41, 13971412.CrossRefGoogle Scholar
Ruiz Cruz, M.D. & Novak, J.K. (2003) Metamorphic chlorite and ‘vermiculitic’ phases in mafic dikes from the Malaguide Complex (Betic Cordillera, Spain). European Journal of Mineralogy, 15, 6780.Google Scholar
Ryka, W. (1981) Some problems of the Autunian volcanism in Poland. Pp. 165179 in: International Symposium ‘Central European Permian', Warsaw 1978. Geological Institute, Warsaw.Google Scholar
Ryka, W. (1989) Rotliegendes volcanics, sediment lithologies and paleoenvironments, and Polish Basin history: an overview. Pp. 627633 in: Sediment-hosted Stratiform Copper Deposits (Boyle, R.W., Brown, A.C., Jefferson, A.W., Jowett, E.C., & Kirkham, R.V., editors). Geological Association of Canada. Special Paper, 36, 627-633.Google Scholar
Sadowski, K. & Madej, S. (2001) Petrography of mafic rocks from the Kotusz-1 borehole (northern part of Fore-Sudetic Monocline). Polskie Towarzystwo Mineralogiczne — Prace Specjalne, 18, 180185.Google Scholar
Scheck, M. & Bayer, U. (1999) Evolution of the Northeast German Basin — inferences from a 3D structural model and subsidence analysis. Tectonophysics, 313, 145169.Google Scholar
Schmidt Mumm, A. & Wolfgramm, M. (2002) Diagenesis and fluid mobilisation during the evolution of the North German Basin — evidence from fluid inclusion and sulphur isotope analysis. Marine and Petroleum Geology, 19, 229246.Google Scholar
Siemaszko, E. (1981) Autunian intrusives in the Fore-Sudetic Monocline. International Symposium ‘Central European Permian’ Warsaw 1978. Geological Institute, Warsaw.Google Scholar
Sokalska, E.T. (2003) Charakterystyka petrologiczno mineralogiczna łupków maficznych z wiercenia Brońsko koło Kościana. MSc project, University of Warsaw.Google Scholar
Sokalska, E.T. (2005) Fluid inclusion study of LGM/ VLGM metamorphosed rocks from Bronsko-2 bore-hole (Wielkopolska Area, Poland) as a tool for metamorphic conditions determination. Polskie Towarzystawo Mineralogiczne - Prace Specjalne, 25, 213216.Google Scholar
Speczik, S. & Rydzewski, A. (1983) Postmagmatic processes in Lower Permian volcanic rocks associated with the Zary Perlickie South-Western Poland. Archiwum Mineralogiczne, 39, 7796.Google Scholar
Springer, R.K. & Day, H.W. (2002) Hydrothermal amphibole in subgreenschist facies mafic rocks, western Sierra Nevada, California. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 341354.Google Scholar
Srodon, J. & Clauer, N. (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland), traced across the Teisseyre-Totnquist tectonic zone using mixed-layer illite-smectite. Clay Minerals, 36, 1527.Google Scholar
Wagner, R. (1994) Stratygrafia osadów i rozwój basenu cechsztyńskiego na Niżu Polskim. Prace Państwowego Instytutu Geologicznego, 146, 171.Google Scholar
Wiewióra, A. (1978) Ni-containing mixed-layer silicates from Szklary, Lower Silesia, Poland. Pp. 247261 in: Collogue sur la minéralogie, géochemie, géologie des minéraux et minérals nickeliferes latéritique, Orléans 1978. Bull. B.R.G.M., duex. série, sect. II, 3.Google Scholar
Wiewiora, A. & Dubińska, E. (1987) Origin of minerals with intermediate chlorite-vermiculite structure. Chemical Geology, 60, 185197.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R., (1999) Structure-related gochemical (REE) and isotopic (K-Ar, Rb-Sr, 518O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochimica et Cosmichimica Ada, 63, 28052823.CrossRefGoogle Scholar