Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T05:52:39.009Z Has data issue: false hasContentIssue false

Clay minerals formed from micas and chlorites in some New Zealand soils

Published online by Cambridge University Press:  09 July 2018

G. J. Churchman*
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand

Abstract

Clay mineralogical differences between eight soils in South Island, New Zealand, are related to differences in climate, vegetation, and formation time. Alteration of chlorite follows the sequence chlorite→interlayered hydrousmica→chlorite-swelling chlorite→chlorite-vermiculite, with increased weathering leading to the destruction of the chloritic layers. Mica (muscovite) follows two alteration sequences depending on the overlying vegetation. Under tussock grassland the sequence is mica→mica-vermiculite→mica-beidellite→beidellite. This sequence is also followed under beech forest, together with the sequence of mica→vermiculite→beidellite, with pedogenic chlorite forming when the pH is > 4·5. All but one of the interstratified products (the interlayered hydrous mica) appear to be based on a 1:1 regular interlayering of the two components.

Résumé

Résumé

Des différences minéralogiques sur l'argile entre huit sols de South Island, en Nouvelle-Zélande, sont reliées à des différences de climat, de végétation et d'époque de formation. L'altération de la chlorite suit la séquence chlorite→mica hydraté intermédiaire→chlorite—chlorite ayant subi un gonflement→chlorite—vermiculite, une action plus forte des intempéries conduisant á la destruction des couches contenant la chlorite. Le mica (muscovite) suit deux séquences d'altération différentes selon la végétion au-dessus de lui. Sous les prairies à herbe en touffes et les forêts de hêtres, la séquence est mica→mica-vermiculite→mica-beidellite→beidellite. Sous les forêts de hêtres seuls la séquence est mica→vermiculite→beidellite, avec la chlorite de formation du sol apparaissant lorsque le pH est supérieur à 4·5. Tous ces produits d'altération sauf un (le mica hydraté intermédiaire) apparaissent comme étant formés de couches alternées régulières des deux composants dans le rapport 1/1.

Kurzreferat

Kurzreferat

Die tonmineralogischen Unterschiede zwischen acht Böden von South Island, Neuseeland werden in Beziehung gebracht zu den Unterschieden im Klima, der Vegetation und der Bildungszeit. Die Chloritumwandlung geht nach folgender Reihenfolge: Chlorit→wechselgelagerter Hydroglimmer→Chlorit mit quellfähigem Chlorit→Chlorit-Vermikulit. Zunehmende Verwitterung führt zur Zerstörung der chloritartigen Schichten. Glimmer (Muskovit) folgt einer Umwandlung nach zwei Folgen, die in Zusammenhang stehen mit der darüber befindlichen Vegetation. Unter buschbewachsenen Wiesen und Buchenwald ist die Reihenfolge: Glimmer→Glimmer-Vermikulit→Glimmer-Beidellit→Beidellit. Unter Buchenwald ist die Reihenfolge Glimmer→Vermikulit→Beidellit mit pedogenem Chlorit bei einem {scph)-Wert > 4·5. Mit Ausnahme von einem dieser Umwandlungsprodukte scheint der wechsellagige Hydroglimmer eine regelmäßige 1 : 1 Wechsellagerung von den beiden Komponenten zu sein.

Resumen

Resumen

Las diferencias mineralógicas de la arcilla entre distintos suelos de South Island (Nueva Zelandia) están relacionadas con diferencias de clima, vegetación, y tiempo de formación. La alteración de la clorita sigue la secuencia clorita→mica hidratada intercalada→clorita—clorita turgente→clorita—vermiculita, conduciendo la creciente meteorización a la destrucción de las capas cloríticas, la mica (muscovita) sigue dos secuencias de alteración, dependiendo de la vegetación superyacente. Bajo prado y hayal la secuencia es mica→mica-vermiculita mica-beidellita→beidellita. Bajo hayal sólo, la secuencia es mica→vermiculita→beidellita, formándose clorita pedogénica cuando el pH es > 4·5. Todos menos uno de estos productos de alteración (la mica hidratada intercalada) parecen basarse en una interestratificación 1 : 1 de los dos componentes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avery, B.W. & Bullock, P (1977) Mineralogy of Clayey Soils in Relation to Soil Classification. Soil Survey Technical Monograph No. 10 HarpenDen.Google Scholar
Bain, D.C. (1977) GeoDerm. 17, 193.Google Scholar
Biscaye, P.E. (1964) Am. Miner. 49, 1281.Google Scholar
Brindley, G.W. (1961) The X-Ray IDentification and Crystal Structures of Clay Minerals (G. Brown, editor), p. 489. Mineralogical Society London.Google Scholar
Buurmann, P, Van Der Plas, L & Slager, S (1976) J. Soil Sei. 27, 395.CrossRefGoogle Scholar
Campbell, A.S. (1974) Trans. 10th Int. Congr. Soil Sci. VI, 60.Google Scholar
Campbell, A.S. (1975) Unpublished PhD Thesis, Lincoln College, University of Canterbury, Christchurch, New Zealand.Google Scholar
Churchman, G.J. (1978) New Zealand J Sci. 21, 467.Google Scholar
Coleman, NT., Le Roux, F.H. & Cady, J.G. (1963) Natur. 198, 409.CrossRefGoogle Scholar
Cradwick, P.D.C. & Wilson, M.J. (1977) Clay Miner. 8, 291.Google Scholar
Crocker, R.L. (1952) Q. Rev. Biol. 27, 139.Google Scholar
De Coninck, F, Conry, M. & Tavernier, R (1975) Proc. Int. Clay Conf. Mexico City 573.Google Scholar
Elverhoi, A & Ronningsland, T.M. (1978) Marine Geol. 27, M19.Google Scholar
Fieldes, M (1962) Trans. Commns. IV & V, Int. Soc. Soil Sci., 62.Google Scholar
Fieldes, M (1968) N.Z. Soil Bur. Bull. 26, 22.Google Scholar
Gjems, O (1960) Clay Miner. Bull. 4, 208.Google Scholar
Gjems, O (1963) Clay Miner. Bull. 5, 183.CrossRefGoogle Scholar
Gjems, O (1970) Soil Sci. 110, 237.Google Scholar
Greene-Kelly, R. (1953) J. Soil Sei. 4, 233.Google Scholar
Jackson, M.L. (1956) Soil Chemical Analysis—AdVan ced Course Published by the author, Dept. of Soil Science, Univ. of Wisconsin, Madison, USA.Google Scholar
Jackson, M.L. (1963) Clays Clay Miner. 11, 29.Google Scholar
Jenny, H (1941) Factors of Soil Formation. McGraw-Hill, New York.CrossRefGoogle Scholar
Jenny, H (1958) Ecolog. 39, 5.Google Scholar
Johns, W.D., Grim, R.E. & Bradley, W.F. (1954) J. Seclim. Petrol. 24, 242.Google Scholar
Johnson, L.J. (1964) Am. Miner. 49, 556.Google Scholar
Kapoor, B.S. (1973) Clay Miner. 10, 79.CrossRefGoogle Scholar
Kodama, H & Brydon, J.E. (1968) Clay Miner. 7, 295.CrossRefGoogle Scholar
Loveland, P.J. & Bullock, P (1975) Clay Miner. 10, 451.Google Scholar
Malcolm, R.L., Nettleton, W.D. & Mccracken, R.J. (1969) Clays Clay Miner. 16, 405.Google Scholar
Martin Vivaldi, J.L. & Macewan, D.M.C. (1960) Clay Miner. Bull. 4, 173.Google Scholar
Millot, G (1970) Geology of Clays Springer Verlag, New York.Google Scholar
Moberg, J.P. (1976) Kg! Vet.-og. Landbohojsk Arsskr. 112.Google Scholar
Molloy, L.F. & Blakemore, L.C. (1974) New Zealand J. Sci. 17, 233.Google Scholar
Norrishk. (1972) Proc. Int. Clay Conf. Madrid-!. Google Scholar
Norrishk. & Huttonj, T. (1969) Geochim. Cosmochim, Acta, 33, 431.Google Scholar
Rich, C.l. (1956) Clays Clay Miner. 5, 203.CrossRefGoogle Scholar
Rodriguez Gallego, M. & AL'IAS PEREZ, L.J. (1965) Clay Miner. 6, 119.Google Scholar
Ross, G.J. & Kodama, H (1976) Clays Clay Miner. 24, 183.Google Scholar
Ross, G.J. & Mortland, M.M. (1966) Soil Sei. Soc. Am. Proc. 30, 337.Google Scholar
Sarkisyan, S.G. & Kotelnikov, DD (1972) Proc. Int. Clay Conf MadridlSl. Google Scholar
Schultz, L.G. (1964) U.S. Geol. Surv. prof Pap. J9/-C 31 pp.Google Scholar
Stephen, I & Macewan, D.M.C. (1951) Clay Miner. Bull. 1, 157.Google Scholar
Taylor, N.H. & Pohlen, I.J. (1968) N.Z. Soil Bur. Bull. 26, 89.Google Scholar
USDA (1975) Soil taxonomy US Dept. Ag. Hanbk. No. 236 U.S. Govt. Printing Office, Washington.Google Scholar
Walker, T.W. (1965) Experimental Pedology (E. G. Hallsworth & D. V. Crawford, editors), p 295. Butterworths, London.Google Scholar
Weaver, CE. (1956) Am. Miner. 41, 202.Google Scholar
Wilde, R.H.(1974) Soils of the Camp Stream Catchment, Canterbury, New Zealand, N.Z. Soil Survey Report 15. Google Scholar
Wilson, M.J. (1970) Clay Miner. 8, 291.Google Scholar