Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:18:50.278Z Has data issue: false hasContentIssue false

Clay minerals for nanocomposites and biotechnology: surface modification, dynamics and responses to stimuli

Published online by Cambridge University Press:  09 July 2018

H. Heinz*
Affiliation:
Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay minerals find a wide range of application in composites, paints, drilling liquids, cosmetics, and medicine. This article reviews chemical and physical properties of natural and organically modified clay minerals to understand the nanometre-scale structure, surface characteristics, and application in functional materials. The relation between fundamental properties and materials design is emphasized and illustrated by examples. The discussion comprises the following: an overview; surface structure and cation density; solubility and solubility reversal by surface modification; the degree of covalent and ionic bonding represented by atomic charges; the distribution of metal substitution sites; measurements and simulations of interfacial properties at the nanometre scale; self-assembly, packing density, and orientation of alkylammonium surfactants on the clay mineral surface; the density and chain conformation of surfactants in organic interlayer spaces; the free energy of exfoliation in polymer matrices and modifications by tuning the cleavage energy; thermal transitions, diffusion, and optical responses of surfactants on the mineral surface; elastic moduli and bending stability of clay layers; and the adsorption mechanism of peptides onto clay mineral surfaces in aqueous solution. Potential applications in biotechnology and other future uses are described.

Type
papers presented at the Euroclay 2011 Conference, Antalya, Turkey 11th George Brown Lecture
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2012 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Footnotes

Presented at the Euroclay 2011 Conference at Antalya, Turkey

References

Adams, A. W. & Gast, A. P. (1997) Physical Chemistry of Surfaces, 6th edition. Wiley, New York.Google Scholar
Aguzzi, C., Cerezo, P., Viseras, C. & Caramella, C. (2007) Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36, 22–36.Google Scholar
Bailey, S.W. (1988) Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, 13. Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Belokoneva, E.L., Gubina, Yu.K., Forsyth, J. B. & Brown, P. J. (2002) The charge-density distribution, its multipole refinement and the antiferromagnetic structure of dioptase, Cu6[Si6O18]·6H2O. Physics and Chemistry of Minerals, 29, 430–438.CrossRefGoogle Scholar
Berend, I., Cases, J.M., Francois, M., Uriot, J.P., Michot, L., Masion, A. & Thomas, F. (1996) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324–336.Google Scholar
Bergaya, F. & Lagaly, G. (2001) Surface modification of clay minerals. Applied Clay Science, 19, 1–3.CrossRefGoogle Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science. Elsevier, Amsterdam.Google Scholar
Brandrup, J., Immergut, E. H. & Grulke, E. A., editors (1999) Polymer Handbook. Wiley, New York.Google Scholar
Breen, C., Watson, R., Madejova, J., Komadel, P. & Klapyta, Z. (1997) Acid-activated organoclays: Preparation, characterization and catalytic activity of acid-treated tetraalkylammonium-exchanged smectites. Langmuir, 13, 6473–6479.CrossRefGoogle Scholar
Brovelli, D., Caseri, W. R. & Hahner, G. (1999) Selfassembled monolayers of alkylammonium ions on mica: Direct determination of the orientation of the alkyl chains. Journal of Colloid and Interface Science, 216, 418–423.Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society, London.Google Scholar
Cases, J.M., Berend, I., Besson, G., Francois, M., Uriot, J.P., Thomas, F. & Poirier, J. E. (1992a) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir, 8, 2730–2739.Google Scholar
Cases, J.M., Pons, C.H., Berend, I., Francois, M., Min, J.H., Tchoubar, D., Besson, G., Thomas, F. & Bottero J. Y. (1992b) Fluid-swelling clays interaction. Proceedings of the 6th IFP Exploration and Production Research Conference, Institut Français du Pétrole, 27–32.Google Scholar
Cases, J.M., Berend, I., Francois, M., Uriot, J.P., Michot, L. J. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 8–22.CrossRefGoogle Scholar
Catti, M., Ferraris, G., Hull, S. & Pavese, A. (1994) Powder neutron diffraction study of 2M1 muscovite at room pressure and at 2 GPa. European Journal of Mineralogy, 6, 171–178.CrossRefGoogle Scholar
Chassin, P., Jounay, C. & Quiquampoix, H. (1986) Measurement of the surface free energy of calciummontmorillonite. Clay Minerals, 21, 899–907.CrossRefGoogle Scholar
Christenson, H.K. (1993) Adhesion and surface energy of mica in air and water. The Journal of Physical Chemistry, 97, 12034–12041.CrossRefGoogle Scholar
Cygan, R.T., Liang, J. J. & Kalinichev, A. G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108, 1255–1266.Google Scholar
Cygan, R.T., Greathouse, J.A., Heinz, H. & Kalinichev, A. G. (2009) Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 2470–2481.CrossRefGoogle Scholar
Drummy, L.F., Koerner, H., Phillips, D.M., McAuliffe, J.C., Kumar, M., Farmer, B.L., Vaia, R. A. & Naik, R. R. (2009) Repeat sequence proteins as matrices for nanocomposites. Materials Science Engineering C, 29, 1266–1272.Google Scholar
Drummy, L.F., Jones, S.E., Pandey, R.B., Farmer, B.L., Vaia, R. A. & Naik, R. R. (2010) Bioassembled layered silicate-metal nanoparticle hybrids. ACS Appied. Materials & Interfaces, 2, 1492–1498.Google Scholar
Fermeglia, M. & Pricl, S. (2007) Multiscale modeling for polymer systems of industrial interest. Progress in Organic Coatings, 58, 187–199.Google Scholar
Fu, Y. T. & Heinz, H. (2010a) Cleavage energy of alkylammonium-modified montmorillonite and the relation to exfoliation in nanocomposites: Influence of cation density, head group structure, and chain length. Chemistry of Materials, 22, 1595–1605.CrossRefGoogle Scholar
Fu, Y. T. & Heinz, H. (2010b) Structure and cleavage energy of surfactant-modified clay minerals: Influence of CEC, head group, and chain length. Philosophical Magazine, 90, 2415–2424.CrossRefGoogle Scholar
Fu, Y.T., Zartman, G.D., Yoonessi, M., Drummy, L. F. & Heinz, H. (2011) Bending of layered silicates on the nanometer scale: mechanism, stored energy, and curvature limits. The Journal of Physical Chemistry C, 115, 22292–22300.CrossRefGoogle Scholar
Jr.Gaines, G.L., (1957) The ion-exchange properties of muscovite mica. The Journal of Physical Chemistry, 61, 1408–1413.Google Scholar
Giese, R. F. & van Oss, C.J. (2002) Colloid and Surface Properties of Clays and Related Minerals. Dekker, New York.Google Scholar
Giese, R.F., Constanzo, P. M. & van Oss, C.J. (1991) The surface free energies of talc and pyrophyllite. Physics and Chemistry of Minerals, 17, 611–616.Google Scholar
Greathouse, J.A., Refson, K. & Sposito, G. (2000) Molecular dynamics simulation of water mobility in magnesium-smectite hydrates. Journal of the American Chemical Society, 122, 11459–11464.CrossRefGoogle Scholar
Greenwell, H.C., Harvey, M.J., Boulet, P., Bowden, A.A., Coveney, P. V. & Whiting, A. (2005) Interlayer structure and bonding in nonswelling primary amine intercalated clays. Macromolecules, 38, 6189–6200.Google Scholar
Habelitz, S., Carl, G., Rüssel, C., Theil, S., Gerth, U., Schnapp J. D., Jordanov, A. & Knake, H. (1997) Mechanical properties of oriented mica glass ceramic. Journal of Non-Crystalline Solids, 220, 291–298.Google Scholar
Hackett, E., Manias, E. & Giannelis, E. P. (1998) Molecular dynamics simulations of organically modified layered silicates. Journal of Chemical Physics, 108, 7410–7415.Google Scholar
Hayes, W. A. & Schwartz, D. K. (1998) Two-stage growth of octadecyltrimethyl-ammonium bromide monolayers at mica from aqueous solution below the Krafft point. Langmuir, 14, 5913–5917.Google Scholar
He, H.P., Galy, J. & Gerard, J. F. (2005) Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids. Journal of Physical Chemistry B, 109, 13301–13306.Google Scholar
Heinz, H. (2010) Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces. Journal of Computational Chemistry, 31, 1564–1568.Google Scholar
Heinz, H. & Suter, U. W. (2004a) Surface structure of organoclays. Angewandte Chemie, 43, 2239–2243. Heinz, H. & Suter, U. W. (2004b) Atomic charges for classical simulations of polar systems. The Journal of Phyical. Chemistry B, 108, 18341–18352.Google Scholar
Heinz, H., Castelijns, H. J. & Suter, U. W. (2003) Structure and phase transitions of alkyl chains on mica. Journal of the American Chemical Society, 125, 9500–9510.Google Scholar
Heinz, H., Paul, W., Binder, K. & Suter, U.W. (2004) Analysis of the phase transitions in alkyl-mica by density and pressure profiles. Journal of Chemical Physics, 120, 3847–3854.Google Scholar
Heinz, H., Koerner, H., Anderson, K.L., Vaia, R. A. & Farmer, B. L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.Google Scholar
Heinz, H., Vaia, R. A. & Farmer, B. L. (2006) Interaction energy and surface reconstruction between sheets of layered silicates. Journal of Chemical Physics, 124, 224713.Google Scholar
Heinz, H., Vaia, R.A., Krishnamoorti, R. & Farmer, B. L. (2007) Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, headgroup structure, and cation exchange capacity. Chemistry of Materials, 19, 59–68.Google Scholar
Heinz, H., Vaia, R. A. & Farmer, B. L. (2008a) Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces. Langmuir, 24, 3727–3733.CrossRefGoogle ScholarPubMed
Heinz, H., Vaia, R.A., Koerner, H. & Farmer, B. L. (2008b) Photoisomerization of azobenzene grafted to montmorillonite: Simulation and experimental challenges. Chemistry of Materials, 20, 6444–6456.Google Scholar
Herrero, C. P. & Sanz, J. (1991) Short-range order of the Si,Al distribution in layer silicates. Journal of Physics and Chemistry of Solids, 52, 1129–1135.Google Scholar
Hill, R.J. (1979) Crystal structure refinement and electron density distribution in diaspora. Physics and Chemistry of Minerals, 5, 179–200.Google Scholar
Iyi, N., Fujita, T., Yelamaggad, C. V. & Lopez Arbeloa, F. (2001) Intercalation of cationic azobenzene derivatives in a synthetic mica and their photoresponse. Applied Clay Science, 19, 47–58.Google Scholar
Jacobs, J.D., Koerner, H., Heinz, H., Farmer, B.L., Mirau, P., Garrett, P. H. & Vaia, R. A. (2006) Dynamics of alkyl ammonium intercalants within organically modified montmorillonite: dielectric relaxation and ionic conductivity. The Journal of Physical Chemistry B, 110, 20143–20157.Google Scholar
Kamal, M.R., Calderon, J. U. & Lennox, R. B. (2009) Surface energy of modified nanoclays and its effect on polymer/clay nanocomposites. Journal of Adhesion Science Technology, 23, 663688.Google Scholar
Kunz, D.A., Max, E., Weinkamer, R., Lunkenbein, T., Breu, J. & Fery, A. (2009) Deformation measurements on thin clay tactoids. Small, 5, 1816–1820.Google Scholar
Kuppa, V. & Manias, E. (2002) Computer simulation of PEO/layered silicate nanocomposites: 2. Lithium dynamics in PEO/Li+ montmorillonite intercalates. Chemistry of Materials, 14, 2171–2175.Google Scholar
Lagaly, G. (1976) Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie International Edition, 15, 575–586.Google Scholar
Lagaly, G. & Dekany, I. (2005) Adsorption on hydrophobized surfaces: clusters and self-organization. Advances in Colloid and Interface Science, 114, 189–204.Google ScholarPubMed
Lagaly, G. & Weiss, A. (1970) Arrangement and orientation of cationic tensides on silicate surfaces. 2. Paraffin-like structures in alkylammonium layer silicates with a high layer charge (mica). Kolloid-Zeitschrift und Zeitschrift für Polymere, 237, 364368.Google Scholar
Lagaly, G. & Weiss, A. (1971) Arrangement and orientation of cationic tensides on silicate surfaces. 4. Arrangement of alkylammonium ions in lowcharged silicates in films. Kolloid-Zeitschrift und Zeitschrift für Polymere, 243, 48–55.Google Scholar
Lee, J. H. & Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1Tc. American Mineralogist, 66, 350–357.Google Scholar
Lewin, M., Mey-Marom, A. & Frank, R. (2005) Surface free energies of polymeric materials, additives, and minerals. Polymers for Advanced. Technologies, 16, 429–441.Google Scholar
Lewis, J., Schwarzenbach, D. & Flack, H. D. (1982) Electric field gradients and charge density in corundum, α-Al2O3 . Acta Crystallographica Section A, A38, 733–739.Google Scholar
Lin, F.H., Lee, Y.H., Jian, C.H., Wong, J.M., Shieh, M.J. & Wang, C. Y. (2002) A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials, 23, 1981–1987.Google Scholar
Lipsicas, M., Raythatha, R.H., Pinnavaia, T.J., Johnson, I.D., Giese, R.F., Constanzo, P. M. & Robert, J. L. (1984) Silicon and aluminium site distribution in 2:1 layered silicate clays. Nature, 309, 604–607.Google Scholar
Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Shamaev, M.Y., Berlin, A.A., Balabaev, N. K. & Rutledge, G. C. (2008) Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 1. Isolated clay nanoplate. The Journal of Physical Chemistry B, 112, 2964–2969.Google Scholar
McNeil, L. E. & Grimsditch, M. (1993) Elastic moduli of muscovite mica. Journal of Physics: Condensed Matter, 5, 1681–1690.Google Scholar
Michot, L.J., Villieras, F., Francois, M., Yvon, J., LeDred, R. & Cases, J. M. (1994) The structural microscopic hydrophilicity of talc. Langmuir, 10, 3765–3773.Google Scholar
Mooney, R.W., Keenan, A. G. & Wood, L. A. (1952a) Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory. Journal of the American Chemical Society, 74, 1367–1374.CrossRefGoogle Scholar
Mooney, R.W., Keenan, A. G. & Wood, L. A. (1952b) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. Journal of the American Chemical Society, 74, 1371–1374.CrossRefGoogle Scholar
Ngo, T. & Schwarzenbach, D. (1979) The use of electric field gradient calculations in charge density refinements. II. Charge density refinement of the lowquartz structure of aluminum phosphate. Acta Crystallographica Section A, A35, 658–664.Google Scholar
Ogawa, M., Ishii, T., Miyamoto, N. & Kuroda, K. (2001) Photocontrol of the basal spacing of azobenzenemagadiite intercalation compound. Advanced Materials, 13, 1107–1109.Google Scholar
Ogawa, M., Ishii, T., Miyamoto, N. & Kuroda, K. (2003) Intercalation of a cationic azobenzene into montmorillonite. Applied Clay Science, 22, 179–185.Google Scholar
Okada, T., Watanabe, Y. & Ogawa, M. (2005) Photoregulation of adsorption behavior of phenol for azobenzene-clay intercalation compounds. Journal of Materials Chemistry, 15, 987–992.Google Scholar
Osman, M. A. & Suter, U. W. (1999) Dodecyl pyridinium alkali metals ion exchange on muscovite mica. Journal of Colloid and Interface Science, 214, 400–406.CrossRefGoogle ScholarPubMed
Osman, M. A. & Suter, U. W. (2000) Determination of the cation-exchange capacity of muscovite mica. Journal of Colloid and Interface Science, 224, 112–115.CrossRefGoogle ScholarPubMed
Osman, M.A., Moor, C., Caseri, W. R. & Suter, U. W. (1999) Alkali metals ion exchange on muscovite mica. Journal of Colloid and Interface Science, 209, 232–239.Google Scholar
Osman, M.A., Seyfang, G. & Suter, U. W. (2000) Twodimensional melting of alkane monolayers ionically bonded to mica. The Journal of Physical Chemistry B, 104, 4433–4439.CrossRefGoogle Scholar
Osman, M.A., Ernst, M., Meier, B. H. & Suter, U. W. (2002) Structure and molecular dynamics of alkane monolayers self-assembled on mica platelets. The Journal of Physical Chemistry B, 106, 653–662.Google Scholar
Osman, M.A., Ploetze, M. & Skrabal, P. J. (2004) Structure and properties of alkylammonium monolayers self-assembled on montmorillonite platelets. The Journal of Physical Chemistry B, 108, 2580–2588.Google Scholar
Osman, M.A., Rupp, J.E.P. & Suter, U. W. (2005) Gas permeation properties of polyethylene-layered silicate nanocomposites. Journal of Materials Chemistry, 15, 1298–1304.Google Scholar
Pandey, R.B., Anderson, K.L., Heinz, H. & Farmer, B. L. (2005) Conformation and dynamics of a selfavoiding sheet: bond-fluctuation computer simulation. Journal of Polymer Science B, 43, 1041–1046.Google Scholar
Pandey, R.B., Heinz, H., Farmer, B.L., Drummy, L.F., Jones, S.E., Vaia, R. A. & Naik, R. R. (2010) Layer of clay platelets in a peptide matrix: Binding, encapsulation and morphology. Journal of Polymer Science B, 48, 2566–2574.Google Scholar
Parbhakar, A., Cuadros, J., Sephton, M. A., Dubbin, W., Coles, B. J. & Weiss, D. (2007) Adsorption of Llysine on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307, 142–149.CrossRefGoogle Scholar
Patwardhan, S.V., Emami, F.S., Berry, R.J., Jones, S.E., Naik, R.R., Deschaume, O., Heinz, H. & Perry, C. C. (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Journal of the American Chemical Society, 134 (published online).Google Scholar
Paul, D. R. & Robeson, L. M. (2008) Polymer nanotechnology: Nanocomposites. Polymer, 49, 3187–3204.Google Scholar
Pawley, A.R., Clark, S. M. & Chinnery, N. J. (2002) Equation of state measurements of chlorite, pyrophyllite, and talc. American Mineralogist, 87, 1172–1182.Google Scholar
Pospisil, M., Capkova, P., Merinska, D., Malac, Z. & Simonik, J. (2001) Structure analysis of montmorillonite intercalated with cetylpyridinium and cetyltrimethylammonium: Molecular simulations and XRD analysis. Journal of Colloid and Interface Science, 236, 127–131.Google Scholar
Pospisil, M., Kalendova, A., Capkova, P., Simonik, J. & Valaskova, M. (2004) Structure analysis of intercalated layer silicates: Combination of molecular simulations and experiment. Journal of Colloid and Interface Science, 277, 154–161.Google Scholar
Ray, S. S. & Bousmina, M. (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962–1079.Google Scholar
Rothbauer, R. (1971) Untersuchung eines 2M1- Muskovits mit Neutronenstrahlen. Neues Jahrbuch für Mineralogie., Monatshefte, 143–154. Sachse, W. & Ruoff, A. L. (1975) Elastic moduli of precompressed pyrophyllite used in ultrahigh-pressure research. Journal of Applied Physics, 46, 3725–3730.Google Scholar
Sanz, J. & Serratosa, J. M. (1984) 29Si and 27A1 highresolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 4790–4793.Google Scholar
Sato, H., Yamagishi, A. & Kawamura, K. (2001) Molecular simulation for flexibility of a single clay layer. The Journal of Physical Chemistry B, 105, 7990–7997.Google Scholar
Schoonheydt, R. A. & Johnston, C. T. (2007) Surface and interface chemistry of clay minerals. Pp. 87–112 in: Handbook of Clay Science I. (Bergaya, F. & Theng, B.K.G., editors). Elsevier Science Ltd, Amsterdam.Google Scholar
Schoonheydt, R. A. & Johnston, C. T. (2011) The surface properties of clay minerals. Pp. 335–370 in: Layered Mineral Structures and their Application in Advanced Technologies (M.F. Brigatti & A. Mottana, editors). The European Mineralogical Union.Google Scholar
Simmons, G. & Wang, H. (1971) Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edition. MIT Press, Cambridge, MA.Google Scholar
Smyth, J.R., Jacobsen, S.D., Swope, R.J., Angel, R.J., Arlt, T., Domanik, K. & Holloway, J. R. (2000) European Journal of Mineralogy, 12, 955–963.Google Scholar
Suter, J. L. & Coveney, P. V. (2009) Materials properties of clay nanocomposites: onset of negative Poisson ratio in large-scale molecular dynamics simulation. Soft Matter, 5, 3896–3904.Google Scholar
Teppen, B.J., Rasmussen, K., Bertsch, P.M., Miller, D. M. & Schafer, L. (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. The Journal of Physical Chemistry B, 101, 1579–1587.Google Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. & Kamigaito, O. (1993) Synthesis of Nylon-6-Clay Hybrid. Journal of Materials Research, 8, 1179–1184. [A similar contribution was first reported at the Fall National Meeting of the American Chemical Society, 1987].CrossRefGoogle Scholar
Vaia, R.A., Teukolsky, R. K. & Giannelis, E. P. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.Google Scholar
Vaia, R. A. & Giannelis, E. P. (1997) Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules, 30, 8000–8009.Google Scholar
Van Olphen, H. (1977) An Introduction to Clay Colloidal Chemistry. Wiley, New York.Google Scholar
Vanorio, T., Prasad, M. & Nur, A. (2003) Elastic properties of dry clay mineral aggregates, suspensions, and sandstones. Geophysical Journal International, 155, 319–326.Google Scholar
Vaughan, M. T. & Guggenheim, S. (1986) Elasticity of muscovite and its relationship to crystal structure. Journal of Geophysical Research, 91, 4657–4664.Google Scholar
Weiss, A., Mehler, A. & Hofmann, U. (1956) Organophile vermiculite. Zeitschrift für Naturforschung, 11b, 431–434.Google Scholar
Yariv, S. & Cross, H., editors (2002) Organo-Clay Complexes and Interactions. Dekker, New York.Google Scholar
Zartman, G.D., Liu, H., Akdim, B., Pachter, R. & Heinz, H. (2010) Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress. The Journal of Physical Chemistry C, 114, 1763–1772.Google Scholar
Zeng, Q.H., Yu, A.B., Lu, G. Q. & Standish, R. K. (2004) Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays. The Journal of Physical Chemistry B, 108, 10025–10033.Google Scholar
Zhu, J.X., He, H.P., Zhu, L.Z., Wen, X. Y. & Deng, F. J. (2005) Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 286, 239–244.Google Scholar