Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T17:23:47.831Z Has data issue: false hasContentIssue false

Clay minerals as dynamic tracers of suspended matter dispersal in the Gulf of Cadiz (SW Spain)

Published online by Cambridge University Press:  09 July 2018

J. M. Gutiérrez-Mas
Affiliation:
Departamento de Geología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Apartado 40, 11510 Puerto Real, Cádiz, Spain
F. López-Aguayo
Affiliation:
Departamento de Geología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Apartado 40, 11510 Puerto Real, Cádiz, Spain
M. Achab
Affiliation:
Departamento de Geología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Apartado 40, 11510 Puerto Real, Cádiz, Spain

Abstract

The dispersal of suspended matter in the Gulf of Cadiz (SW Spain) is related to its geographical position near the Strait of Gibraltar, and the continental margin, and to Atlantic and Mediterranean water flows and their interaction with the littoral tidal processes. The main direction for transport of suspended matter is towards the southeast, along the continental margin, from the mouths of the rivers Guadiana and Guadalquivir to the Mediterranean. This general transport pattern is perturbed by littoral processes such as those occurring in Cadiz Bay, where a portion of Atlantic suspended matter, driven by flood tide, comes into the inner bay and is deposited in the shallow waters of lagoons and salt marshes. Subsequently, because of the southeast wind and waves, these sediments are remobilized and transported to the west by the ebb tide, to deeper Atlantic waters. This dynamic interaction between Atlantic and littoral waters generates a different type of sediment layout, the origin of which is difficult to establish.

In order to understand the dispersal of the suspended matter and its effects on the inner continental shelf, the distribution of the main clay minerals has been determined by means of X-ray and Q-mode and R-mode factor analysis. The suspended matter dispersal paths were established through the distribution of main clay mineral associations and from the ratios amongst these minerals. The results allow us to determine the importance of the tidal flows in the suspended matter transport system of the Gulf of Cadiz. Therefore, a record was kept of which of the outgoing tidal flows from the inner parts of Cadiz Bay reached the continental shelf. The flows intercept the clear Atlantic waters giving rise to a complex sediment distribution and to the mix of clay minerals. The study has also allowed us to establish the sediment source areas and the extent of sediment transport and the paths they follow.

Type
Research papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achab, M. (2000) Estudio de la transferencia sedimentaria entre la bahia de Cadiz y la plataforma continental adyacente. Modelo de transporte mediante el uso de minérales de la arcilla como trazadores naturales. Doctoral thesis, Universidad de Cadiz, Spain, 533 pp.Google Scholar
Achab, M., Gutiérrez-Mas, J.M. & Sanchez Bellôn, A. (1998) Transport of fine sediments and clay minerals from the tidal flats and salt marshes in Cadiz bay towards outer marine zones. Pp. 9394 in: On European Land-Ocean Interaction Studies. Huelva, Spain, Abstract volume.Google Scholar
Alvarez, O., Izquierdo, A., Tejedor, B., Mafianes, R., Tejedor, L. & Kagan, B.A. (1999) The influence of sediment load on tidal dynamics, a case study: Cadiz Bay. Estuarine, Coastal and Shelf Science. 48, 439450.CrossRefGoogle Scholar
Baldy, P., Boillot, G., Dupeuble, P.A., Malod, J., Moita, I. & Mougenot, D. (1977) Carte Géologique du plateau continental sud-portugais et sud-espagnol (Golfe de Cadiz). Bulletin de la Société Géologique de France. 7, t.19, 703724.CrossRefGoogle Scholar
Baringer, M.O. & Price, J.F. (1999) A review of the physical oceanography of the Mediterranean outflow. Marine Geology. 155, 6382.CrossRefGoogle Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin. 76, 803832 CrossRefGoogle Scholar
Edzwald, J.K. & O'Mella, C.R. (1975) Clay distribution in recent estuarine sediments. Clays and Clay minerals. 23, 3944.Google Scholar
Fernandez Caliani, J.C., Ruiz Mufloz, F. & Galân, E. (1997) Clay mineral and heavy metal distribution in the lower estuary of Huelva and adjacent Atlantic Shelf SW Spain. The Science of the Total Environment. 198, 181200.CrossRefGoogle Scholar
Feulliet, J.P. & Fleischer, P. (1980) Estuarine circulation controlling factor of clay mineral distribution in James river estuary, Virginia. Journal of Sedimentary Petrology. 50, 267279.Google Scholar
Gutiérrez-Mas, J.M., Martin Algarra, A., Dominguez Bella, S. & Moral Cardona, J.P. (1990) Introducciôn a la Geologia de la Provincia de Cadiz. Servicio de Publiciones de la Universidad de Cadiz, Spain, 315 pp.Google Scholar
Gutiérrez-Mas, J.M., Sanchez Bellôn, A., Moral Cardona, J.P. & Lôpez-Aguayo, F. (1996) Clay minerals in recent sediments of the Cadix bay and their relationships with the adjacent emerged land and the continental shelf. Pp. 121123 in: Advances in Clay Mineral. (Ortega Huertas, M., Lopez Galindo, A. and Palomo Delgado, I., editors). Sociedad Espafiola de Arcillas.Google Scholar
Gutiérrez-Mas, J.M., Sanchez Bellôn, A., Achab, M., Ruiz Segura, J., Gonzalez Caballero, J.L., Parrado Roman, J.M. & Lôpez-Aguayo, F. (1999) Continental shelf zones influenced by the suspended matter flows coming from Cadiz Bay. Boletin Instituto Espahol de Oceanografia. 15, Suplemento 1, 145152.Google Scholar
Gutiérrez-Mas, J.M., Moral, J.P., Sanchez, A., Dominguez, S. & Mufioz-Pérez, J.J. (2003) Multicycle sediments on the continental shelf of Cadiz (SW Spain). Estuarine Coastal and Shelf Science. 57/4, 671681.CrossRefGoogle Scholar
Mabesoone, J.M. (1963) Coastal sediments and coastal development near Cadiz. Géologie en Mijnbouw. 42, 2343.Google Scholar
Mabessone, J.M. (1966) Depositional and provenance of the sediments in the Guadalete estuary (Spain). Géologie en Mijnbouw. 45, 2532.Google Scholar
Ministerio de Obras Pûblicas y Transporte (MOPT) (1992) Clima maritimo en el litoral espanol. Ministerio de Obras Pûblicas y Transporte, Spain, 72 pp.Google Scholar
Ortega-Huertas, M., Palomo, I., Moresi, M. & Oddone, M. (1991) A mineralogical and geochemical approach to establishing a sedimentary model in a passive continental margin (Subbetic zone, Betic Cordilleras, SE Spain). Clay Minerals. 26, 389407.CrossRefGoogle Scholar
Parrado Roman, J.M., Gutiérrez-Mas, J.M. & Achab, M. (1996) Determinaciôn de direcciones de corrientes mediante el anâlisis de formas de fondo en la bahia de Cadiz. Geogaceta. 20(2) 378381.Google Scholar
Sanz de Galdeano, C. (1990) Southern extension of hollows and splitting originating in northern and central Europe. A proposal for interpretation. Revista de la Sociedad Geolôgica de Espana. 3, 231241.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geological Survey, Professional Paper. 391c.CrossRefGoogle Scholar
Segado, M., Gutiérrez-Mas, J.M., Hidalgo, F., Martinez, J.M. & Cepero, F. (1984) Estudio de los sedimentos recientes de la plataforma continental gaditana entre Chipiona y cabo Roche. Boletin Geolôgico y Minero. XCV-IV, 310324.Google Scholar
Tucker, M. (1988) Techniques in Sedimentology. Blackwell, Oxford, UK.Google Scholar
Viguier, C. (1974) Les grands traits de la tectonique du basin néogéne du Bas Guadalquivir. PhD thesis, University of Bordeaux, France 449 pp.Google Scholar