Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T07:23:03.822Z Has data issue: false hasContentIssue false

Clay mineralogy of the Permo-Triassic strata of the British Isles: onshore and offshore

Published online by Cambridge University Press:  09 July 2018

C. V. Jeans*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
*

Abstract

The regional distribution, mineralogy, petrology and chemistry of the detrital and authigenic clay minerals associated with the Permo-Triassic strata (excluding the Rotliegend: see Ziegler, 2006; this volume), of the onshore and offshore regions of the British Isles are reviewed within their stratigraphical framework. The origin of these clay minerals is discussed in relation to current hypotheses on the developments of the Mg-rich clay mineral assemblages associated with the evaporitic red-bed Germanic facies of Europe and North Africa.

Composite clay mineral successions are described for seven regions of the British Isles — the Western Approaches Trough; SW England; South Midlands; Central Midlands; the Cheshire Basin; NE Yorkshire; and the Central North Sea. The detrital clay mineral assemblages of the Early Permian strata are variable, consisting of mica, smectite, smectite-mica, kaolin and chlorite, whereas those of the Late Permian and the Trias are dominated by mica, usually in association with minor Fe-rich chlorite. The detrital mica consists of a mixture of penecontemporaneous ferric mica, probably of pedogenic origin, and recycled Pre-Permian mica. In the youngest Triassic strata (Rhaetian), the detrital clay assemblages may contain appreciable amounts of poorly defined collapsible minerals (irregular mixed-layer smectite-mica-vermiculite) and kaolin, giving them a Jurassic aspect. There are two types of authigenic clay mineral assemblages. Kaolin may occur as a late-stage diagenetic mineral where the original Permo-Triassic porewaters of the sediment have been replaced by meteoritic waters. A suite of early-stage diagenetic clay minerals, many of them Mg-rich, are linked to the evaporitic red-bed facies — these include sepiolite, palygorskite, smectite, irregular mixed- layer smectite-mica and smectite-chlorite, corrensite, chlorite and glauconite (sensu lato). The sandstones and mudstones of the onshore regions of the British Isles display little or no difference in their detrital and authigenic clay mineral assemblages. In contrast, the sandstones of the offshore regions (North Sea) show major differences with the presence of extensive chloritic cements containing Mg-rich and Al-rich chlorite, irregular mixed-layer serpentine-chlorite, and mica.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benton, M.J., Cook, E. & Turner, P. (2002) Permian and Triassic red beds and the Penarth Groups of Great Britain. Geological Conservation Review Series, 24, 337 pp.Google Scholar
Bloodworth, A.J. & Prior, A.V. (1993) Clay mineral stratigraphy of the Mercia Mudstone Group in the Nottingham area. British Geological Survey Technical Report WG/93/29. 26 pp.Google Scholar
Bosworth, T.O. (1912) The Keuper Marl around Charnwood. Leicester: Literary and Philosophical Society, 129 pp.Google Scholar
Burley, S.D. (1984) Patterns of diagenesis in the Sherwood Sandstone Group (Triassic), United Kingdom. Clay Minerals, 19, 403–440.Google Scholar
Calvo, J.P., Blanc Valleron., M.M., Rodriguez-Arandia., J.P., Rouchy, J.M. & Sanz, M.E. (1999) Authigenic clay minerals in continental evaporitic environments. Pp. 129–151 in: Palaeoweathering, Palaeosurfaces and Related Continental Deposits (Thiry, M. & Simon Coinçon, R., editors). Special Publications, 27, International Association of Sedimentologists.Google Scholar
Cosgrove, M.E. & Salter, D.L. (1966) The stratigraphical distribution of kaolinite in the post-Amorican formations of south west England. Proceedings of the Ussher Society, 1, 245–252.Google Scholar
Doff, D.H. (2000) Saponite-rich sandstones in Northern Ireland. Abstract from the 16th Conference on Clay Mineralogy and Petrology. Czech National Clay Group, Karlovy Vary, August 2000. Google Scholar
Dumbleton, M.J. & West, G. (1966) Studies of the Keuper Marl: mineralogy. Road Research Laboratory (Ministry of Transport) Report no. 40. 25 pp.Google Scholar
Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagene`se: passage au métamorphisme. Mémoires du Service de la carte geologique d'Alsace et de Lorraine, 29, 320 pp.Google Scholar
Echle, W. (1961) Mineralogische Untersuchungen an Sedimenten des Steinmergelkeupers und der Roten Wand aus der Umgebung von Göttingen. Beiträge zur Mineralogie und Petrographie, 8, 28–59.Google Scholar
Evans, A.M. & King, R.J. (1962) Palygorskite in Leicestershire. Nature, 194, 860.Google Scholar
Fisher, M.J. (1985) Palynology of sedimentary cycles in the Mercia Mudstone and Penarth Groups (Triassic) of southwest and central England. Pollen et Spores, 27, 95–112.Google Scholar
Fisher, M.J. & Jeans, C.V. (1982) Clay mineral stratigraphy in the Permo-Triassic red bed sequence of BNOC 72/10-1A, Western Approaches, and the South Devon coast. Clay Minerals, 17, 79–89.Google Scholar
Fisher, M.J. & Mudge, D.C. (1998) Triassic. Pp. 212–244 in: Petroleum Geology of the North Sea, 4th edition (Glennie, K.W., editor). Blackwell Science, Oxford, 636 pp.Google Scholar
Freeman, I.L. (1964) Mineralogy of ten British brick clays. Clay Minerals Bulletin, 5, 474–486.Google Scholar
Gallois, R.W. (2002) The lithostratigraphy of the Mercia Mudstone Group (mid to late Triassic) of the south Devon coast. Geoscience in south-west England, 10, 195–204.Google Scholar
Gallois, R.W. (2003) The distribution of halite (rock salt) in the Mercia Mudstone Group (mid to late Triassic) in south-west England. Geoscience in south-west England, 10, 383–389.Google Scholar
Geiger, M.E. & Hopping, C.A. (1968) Triassic stratigraphy of the Southern North Sea Basin. Philosophical Transactions of the Royal Society, Series B 254, 1–36.Google Scholar
Goodall, I.G. (1987) Sedimentology and Diagenesis of the Edlington Formation (Upper Permian) of Teeside. PhD thesis, University of Reading, UK.Google Scholar
Gradstein, F., Ogg, J. & Smith, A. (2004) . Geologic Time Scale 2004. Cambridge University Press, Cambridge, UK, 589 pp.Google Scholar
Griffin, G.M. (1971) Interpretation of X-ray diffraction data. Pp. 541–569 in: Procedures in Sedimentary Petrology (Carver, R.E., editor). Wiley Interscience, New York.Google Scholar
Henson, M.R. (1973) Clay minerals from the lower New Red Sandstone of south Devon. Proceedings of the Geologists' Association, 84, 429–445.Google Scholar
Hillier, S. (1993) Origin, diagenesis and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 107–115.CrossRefGoogle Scholar
Hillier, S., Wilson, M.J. & Merriman, R.J. (2006) Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England. Clay Minerals, 41, 433–471.Google Scholar
Honeyborne, D.B. (1951) The clay minerals in the Keuper Marl. Clay Minerals Bulletin, 1, 150–157.Google Scholar
Hounslow, M.W., Gallois, R.W., McIntosh, G. & Jenkins, G. (2003) An Anisian, Ladinian, Carnian and basal Norian non-marine reference section: the coastal exposures between Budleigh Salterton and Branscombe, South Devon, UK (abstract). Geoscience in south-west England, 10, 453.Google Scholar
Howard, A.S., Warrington, G., Ambrose, K. & Rees, J.G. (2005) A formational framework for the Mercia Mudstone Group (Triassic) of England and Wales. British Geological Survey Research Report, RR/05/ XX, 65 pp. (in press).Google Scholar
Huey, R.B. & Ward, P.D. (2005) Hypoxia, global warming, and terrestrial late Permian extinctions. Science, 308, 398–401.CrossRefGoogle ScholarPubMed
Huggett, J. (2004) Comments on Kirkham's glauconitic spherules from the Triassic of the Bristol area, SW England: probable microtektite pseudomorphs, with reply by A. Kirkham. Proceedings of the Geologists' Association, 115, 189–192.Google Scholar
Humphreys, B., Smith, S.A. & Strong, G.E. (1989) Authigenic chlorite in late Triassic sandstones from the Central Graben, North Sea. Clay Minerals, 24, 427–444.Google Scholar
Jeans, C.V. (1978) The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England. Philosophical Transactions of the Royal Society Series A 289, 549–639.Google Scholar
Jeans, C.V. (1994) Clay diagenesis, overpressure and reservoir quality: an introduction. Clay Minerals, 29, 415–424.CrossRefGoogle Scholar
Jeans, C.V. (1995) Clay mineral stratigraphy in Palaeozoic and Mesozoic red bed facies onshore and offshore UK. Pp. 31–55 in: Non-biostratigra-phical Methods of Dating and Correlation (Dunay, R.E. & Hailwood, E.A., editors). Special Publication, 89. Geological Society of London.Google Scholar
Jeans, C.V. (2006) Clay mineralogy of the Jurassic strata of the British Isles. Clay Minerals, 41, 187–307.Google Scholar
Jeans, C.V. & Atherton, A.F. (1989) Silicate and associated cements in an Oxfordian marine-freshwater transition, Inner Moray Firth, UK North Sea. Clay Minerals, 24, 317–337.Google Scholar
Jeans, C.V., Reed, S.J.B. & Xing, M. (1993) Heavy mineral stratigraphy in the UK Trias: West Approaches, onshore England and the Central North Sea. Pp. 609–624 in: Petroleum Geology of th Northwest Europe: Proceedings of the 4Conference (Parker, J.R., editor). Geological Society, London.Google Scholar
Jeans, C.V., Mitchell, J.G., Scherer, M. & Fisher, M.J. (1994) Origin of Permo-Triassic clay mica assemblage. Clay Minerals, 29, 575–589.Google Scholar
Jeans, C.V., Mitchell, J.G., Fisher, M.J., Wray, D.S. & Hall, I.R. (2001) Age, origin and climatic signal of English Mesozoic clays based on K/Ar signatures. Clay Minerals, 36, 515–539.Google Scholar
Jeans, C.V., Fisher, M.J. & Merriman, R.J. (2005) Origin of the clay mineral assemblages in the Germanic facies of the English Trias: application of the spore colour index method. Clay Minerals, 40, 115–129.CrossRefGoogle Scholar
Jones, A.P. (2005) Meteorite impacts as triggers to large igneous provinces. Elements, 1, 277–281.Google Scholar
Kaldi, J. (1986) Diagenesis of nearshore carbonate rocks in the Sprotbrough Member of the Cadeby (Magnesian Limestone) Formation (Upper Permian) of eastern England. Pp. 87–102 in: The English Zechstein and Related Topics (Harwood, G.M. & Smith, D.B., editors). Special Publication 22. Geological Society, London.Google Scholar
Keeling, P.S. (1956) Sepiolite at a locality in the Keuper Marl of the Midlands. Mineralogical Magazine, 31, 328–332.Google Scholar
Keihl, J.T. & Shields, C.A. (2005) Climate simulation of the latest Permian: implications for mass extinction. Geology, 33, 757–760.Google Scholar
Kemp, S.J. (1999) The clay mineralogy and maturity of the Mercia Mudstone Group from Asfordby bore-hole, Leicestershire. British Geological Survey Technical Report WG/99/7, 22 pp.Google Scholar
Kerr, A.C. (2005) Oceanic LIPs: the kiss of death. Elements, 1, 289–292.CrossRefGoogle Scholar
King, R.J. & Ford, T.D. (1969) Mineral localities at the base of the Trias in Leicestershire and Derbyshire. Mercian Geologist, 3, 85–88.Google Scholar
Kirkham, A. (2002) Triassic microtektite pseudomorphs of the Bristol area. Geoscientist, 12, 17–18.Google Scholar
Kirkham, A. (2003a) Glauconitic spherules from the Triassic of the Bristol area, probable microtektite pseudomorphs. Proceedings of the Geologists' Association, 114, 11–22.Google Scholar
Kirkham, A. (2003b) Rejoinder to invited comments on Kirkham's 'Glauconite spherules from the Triassic of the Bristol area, probable microtektite pseudo-morphs'. Proceedings of the Geologists' Association, 114, 177–179.Google Scholar
Krumm, H. (1969) A scheme of clay mineral stability in sediments based on clay mineral distribution in Triassic sediments of Europe. Proceedings of the International Clay Conference, Tokyo, vol. 1, p. 313.Google Scholar
Leslie, A.B., Tucker, M.E. & Spiro, B. (1992) A sedimentological and stable isotopic study of traver-tines and associated sediments within Upper Triassic lacustrine sediments, South Wales, U.K. Sedimentology, 39, 613–629.CrossRefGoogle Scholar
Leslie, A.B., Spiro, B. & Tucker, M.E. (1993) Geochemical and mineralogical variations in the upper Mercia Mudstone Group (late Triassic), southwest Britain: correlation of outcrop sequences with borehole geophysical logs. Journal of the Geological Society of London, 150, 67–75.Google Scholar
Lippmann, F. (1954) Über einen Keuperton von Zaiserhweiher bei U Maulbronn. Heidelberger Beiträge zur Mineralogische und Petrographie, 4, 130–134.Google Scholar
Lippmann, F. (1956) Clay minerals from the Rö t member of the Triassic near Gö ttingen, Gemany. Journal of Sedimentary Petrology, 26, 125–137.Google Scholar
Lippman, F. (1959) Corrensit. Pp. 688–691 in: Handbuch der Mineralogie (Hintze, C. & Chudoba, K.F., editors). de Gruyter, Berlin.Google Scholar
Lippmann, F. & Berthold, C. (1992) Der Mineralbestand des Unteren Muschelkalks von Geislingen bei Schwäbisch Hall (Deutschland). Neues Jahrbuch für Mineralogie Abhandlungen, 164, 183–200.Google Scholar
Lippmann, F. & Pankau, H.-G. (1988) Der Mineralbestand des Mittleren Muschelkalkes von Nagold, Württemberg. Neues Jahrbuch für Mineralogie Abhandlungen, 158, 257–292.Google Scholar
Lippmann, F. & Savasçin, M.Y. (1969) Mineralogische Untersuchungen an Lösungs-rückständen eines würt-tembergri schen Keupergipsvorkommens. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 165–190.Google Scholar
Lippmann, F. & Schlenker, B. (1970) Mineralogische Untersuchungen am Oberen Muschelkalk von Haigerloch (Hohenzollern). Neues Jahrbuch für Mineralogie Abhandlungen, 113, 68–90.Google Scholar
Lippmann, F. & Steiner, K. (1983) Der Mineralbestand des Gipskeuper von Pfäffingen (Tübingen) und Schenningen, Württemberg. Oberrheinische Geologische Abhandlungen, 32, 15–43.Google Scholar
Lippmann, F. & Zimmermann, M. (1983) Die Petrographie des Knollenmergel, Mittlerer Keuper, Trias. Geologische Rundschau, 72, 1105–1134.Google Scholar
Lucas, J. (1962) La transformation des minéraux argileux dans la sédimentation: tudes sur les argiles dú Trias. Mémoires du Service E de la carte geologique d'Alsace et de Lorraine, 23. 202 pp.Google Scholar
Lucas, J. & Ataman, G. (1968) Mineralogical and geochemical study of clay mineral transformations in the sedimentary Triassic Jura Basin (France). Clays and Clay Minerals, 16, 365–372.Google Scholar
Martin-Vivaldi., J.L. & MacEwan, D.M.C. (1957) Triassic chlorites from the Jura and the Catalan coastal range. Clay Minerals Bulletin, 3, 177–183.Google Scholar
Martin-Vivaldi., J.L. & MacEwan, D.M.C. (1960) Corrensite and swelling chlorite. Clay Minerals Bulletin, 4, 173–181.Google Scholar
Mayall, M.J. (1979) The clay mineralogy of the Rhaetic transgression in Devon and Somerset – environmental and stratigraphical implications. Proceedings of the Ussher Society, 4, 303–311.Google Scholar
Millot, G. (1964) Géologie des Argiles. Masson et Cie, Paris, 499 pp.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 332 pp.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd edition. Oxford University Press, New York, 378 pp.Google Scholar
Perrin, R.M.S. (1971) The Clay Mineralogy of British Sediments. Mineralogical Society (Clay Minerals Group), London, 247 pp.Google Scholar
Plant, J.A., Jones, D.G. & Haslam, H.W. (1999) The Cheshire Basin: basin evolution, fluid movement and mineral resources in a Permo-Triassic rift setting. British Geological Survey, Keyworth, Nottingham, 263 pp.Google Scholar
Porter, R.J. & Gallois, R.W. (2005) An integrated sedimentological and ichnological analysis of an arenaceous unit in the Mercia Mudstone Group, east Devon U.K. (Abstract). Geoscience in south-west England, 11, 166.Google Scholar
Purvis, K. (1990) The clay mineralogy of the Upper Triassic Skagerrak Formation, Central North Sea. Proceedings, 9th International Clay Conference, Strasbourg 1989. Sciences Géologiques-Mémoire, 88, 125–134.Google Scholar
Raymond, L.R. (1955) The Rhaetic Beds and Tea Green Marl of North Yorkshire. Proceedings of the Yorkshire Geological Society, 30, 5–23.Google Scholar
Saunders, A.D. (2005) Large igneous provinces: origin and environmental consequences. Elements, 1, 259–263.CrossRefGoogle Scholar
Self, S., Thordarson, T. & Widdowson, M. (2005) Gas fluxes from flood basalt eruptions. Elements, 1, 283–287.Google Scholar
Smith, D.B. (1968) The Hampole Beds – a significant marker in the Lower Magnesian Limestone of Yorkshire, Derbyshire and Nottinghamshire. Proceedings of the Yorkshire Geological Society, 36, 463–477.Google Scholar
Smith, D.B., Brunstrom, R.G.W., Manning, P.I., Simpson, S. & Shotton, F.W. (1974) A correlation of Permian rocks in the British Isles. Geological Society Special Report No. 5, 45 pp.Google Scholar
Smith, D.B., Harwood, G.M., Pattison, J. & Pettigrew, T.H. (1986) A revised nomenclature for Upper Permian strata in eastern England. Pp. 9–17 in: The English Zechstein and Related Topics (Harwood, G.M. & Smith, D.B., editors). Special Publication, 22, Geological Society, London.Google Scholar
Stephen, I. & MacEwan, D.M.C (1950) Swelling chlorite. Geotechnique, 2, 82–83.CrossRefGoogle Scholar
Stephen, I. & MacEwan, D.M.C. (1951) Some chloritic clay minerals of unusual sort. Clay Minerals Bulletin, 1, 157–162.Google Scholar
Talbot, M.R., Holm, K. & Williams, M.A.J. (1994) Sedimentation in low-gradient desert margin systems: a comparison of the Late Triassic of north-west Somerset (England) and the Late Quaternary of east-central Australia. Pp. 97–117 in: Palaeoclimate and Basin Evolution of Playa Systems (Rosen, M.R., editor). Special Paper 289, Geological Society of America.Google Scholar
Taylor, J.C.M. (1998) Upper Permian-Zechstein. Pp. 174–211 in: Petroleum Geology of the North Sea (Glennie, K.W., editor). Blackwell Science, Oxford, UK, 636 pp.Google Scholar
Taylor, S.R. (1983) A stable isotopic study of the Mercia Mudstones (Keuper Marl) and associated sulphate horizons in the English Midlands. Sedimentology, 30, 11–31.Google Scholar
Walken, G., Parker, J. & Kelly, S. (2002) A Late Triassic impact ejecta layer in southwestern Britain. Science, 298, 2185–2188.Google Scholar
Warrington, G., Audley-Charles., M.G., Elliott, R.E., Evans, W.B., Ivimey-Cook., H.C., Kent, P.E., Robinson, P.L., Shotton, F.W. & Taylor, F.M. (1980) A correlation of Triassic rocks in the British Isles. Geological Society Special Report No. 13, 78 pp.Google Scholar
Watts, N.L. (1976) Paleopedogenic palygorskite from basal Permo-Triassic of northwest Scotland. American Mineralogist, 61, 299–302.Google Scholar
Weibel, R. (1999) Effects of burial on the clay assemblage in the Triassic Skagerrak Formation, Denmark. Clay Minerals, 34, 619–36.Google Scholar
Wignall, P. (2005) The link between large igneous province eruptions and mass extinctions. Elements, 1, 293–297.Google Scholar
Wright, V.P. & Sandler, A. (1994) A hydrogeological model for the early diagenesis of Late Triassic alluvium sediments. Journal of the Geological Society, London, 151, 897–900.Google Scholar
Ziegler, K. (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41, 355–393.Google Scholar
Ziegler, P.A. (1982) Geological Atlas of Western Europe. Shell Internationale Petroleum Maatschappij B.V., 130 pp. + enclosures.Google Scholar