Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T23:43:18.812Z Has data issue: false hasContentIssue false

Clay mineralogical variations and evolutions in sandstone sequences near a coal seam and shales in the Westphalian of the Campine Basin (NE Belgium)

Published online by Cambridge University Press:  09 July 2018

I. Van Keer
Affiliation:
Fysico-chemische geologie, K.U. Leuven, Celestijnenlaan 200C, B-3001 Heverlee, Belgium
Ph. Muchez
Affiliation:
Fysico-chemische geologie, K.U. Leuven, Celestijnenlaan 200C, B-3001 Heverlee, Belgium
W. Viaene
Affiliation:
Fysico-chemische geologie, K.U. Leuven, Celestijnenlaan 200C, B-3001 Heverlee, Belgium

Abstract

Mineralogical trends have been investigated on a detailed scale in two Westphalian fluvial sandstone sequences in contact with either a coal seam or shales. The evolution in an authigenic clay mineral assemblage can be related to changes in the pH of the pore-water. Firstly, kaolinite formed early in diagenesis, mainly as a result of K-feldspar dissolution and alteration. This process, which took place under acidic conditions, consumed protons. Subsequently the pH of the pore-water increased and after compaction, illitization of kaolinite occurred under near neutral conditions. Deep burial is marked by dickite formation, which again reflects acidic conditions. Distribution of clay minerals is related to meteoric water flux through the sediments and the release of organic acids and CO2 from coalification of organic matter in the underlying strata.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1963) Polymorphism of the clay minerals. Am. Miner. 48, 11961209.Google Scholar
Barth, T. & Bjørlykke, K. (1993) Organic acids from source rock maturation: generation potentials, transport mechanism and relevance for mineral diagenesis. Appl, Geochem. 8, 325337.Google Scholar
Bennett, Ph.C. (1991) Quartz dissolution in organic-rich aqueous systems. Geochim. Cosmochim. Acta, 55, 17811797.Google Scholar
Bjørkum, R.A. & Gjelsvik, N. (1988) An isochemical model for the formation of authigenic kaolinite, Kfeldspar and illite in sediments. J. Sed. Pet. 58, 506511.Google Scholar
Bjørlykke, K. (1989) Sedimentology and Petroleum Geology. Springer-Verlag, Berlin.Google Scholar
Bjørlykke, K. (1994) Fluid-flow processes and diagenesis in sedimentary basins. Pp. 127 – 140 in: Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins (Parnell, J., editor). Geological Society Spec. Pub. 78.Google Scholar
Bjørlykke, K. & Aagaard, P. (1992) Clay minerals in North Sea sandstones. Pp. 65–80 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.P., editors). Soc. Economical Paleontology and Mineralogy Spec. Pub. 47.Google Scholar
Bjørlykke, K., Elverhøi, A. & Maim, A.O. (1979) Diagenesis in Mesozoic sandstones from Spitsbergen and the North Sea. A comparison. Geol. Rundschau, 68, 11521171.CrossRefGoogle Scholar
Bjørlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. & Harper, A.S. (1986) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid-Norway. Pp. 275–386 in: Habitat of Hydrocarbons on the Norwegian Continental Shelf (Spencer, A.M., editor). Norwegian Petroleum Society, Graham and Trotman, London.Google Scholar
Bostick, N.H., Cashman, S.H., McCulloh, T.H. & Wadell, C.T. (1979) Gradients of vitrinite reflectance and present temperatures in the Los Angeles and Ventura Basins, California. Pp. 65–96 in: Low Temperature Metamorphism ofKerogen and Clay Minerals (Oltz, D.F., editor). Los Angeles.Google Scholar
Bouckaert, J. & Dusar, M. (1987) Arguments géophysiques pour une tectonique cassante en Campine (Belgique), active au Paléozoique Supérieur et réactivre depuis le Jurassique Supérieur. Ann. Soc. Géol, Nord, 151, 201208.Google Scholar
Caers, J., Swennen, R. & Dusar, M. (1996) Diagenetic history of Westphalian A and B fluvio-deltaic deposits: an example from the KB206 Peer borehole (Campine Basin, NE-Belgium). Zbl. Geol. Paliiont. 1994, 12111236.Google Scholar
Crossey, L., Surdam, R.C. & Lahann, R. (1986) Application of organic/inorganic diagenesis to porosity prediction. Pp. 147–155 in: Roles of lnorganic Matter in Sediment Diagenesis (Gaulier, D.L., editor). Soc. Economical Paleontology and Mineralogy Spec. Pub. 38.Google Scholar
Dickson, J.A (1966) Carbonate identification and genesis as revealed by staining. J. Sed. Pet. 36, 491-505.Google Scholar
Dreesen, R., Bossiroy, D., Dusar, M., Flores, R.M & Verkaeren, P. (1995) Overview of the influence of syn-sedimentary tectonics and paleo-fluvial systems on coal seam and sandbody characteristics in the Westphalian C strata. Pp. 215-232 in: European Coal Geology (Whateley, M.K.G. & Spears, D.A., editors). Geological Society Spec. Pub. 82.Google Scholar
Drits, V. A. & Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures. Theory and Applications to Microdivided Silicates and Carbons. Springer-Verlag, Berlin-Heidelberg.Google Scholar
Dunoyer DeSegonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol. 15, 281–346.Google Scholar
Ehrenberg, S.N. (1991) Kaolinized, potassium leached zones at the contacts of the Garn Formation, Haltenbanken mid-Norwegian continental shelf. Mar. Petrol. Geol. 8, 250269.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken Area, mid-Norwegian continental shelf. Clay Miner. 24, 233253.Google Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Miner. 28, 325352.Google Scholar
Garrels, R.M. & Christ, C.L. (1965) Solutions, Minerals and Equilibria. Harper & Row, New York.Google Scholar
Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebuck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany. A.A.P.G. Bull. 77, 11111128.Google Scholar
Giordano, T. & Kharaka, Y.K. (1994) Organic ligand distribution and speciation in sedimentary basin brines, diagenetic fluids and related ore solutions. Pp. 175-202 in: Geofluids; Origin, Migration and Evolution of Fluids in Sedimentary Basins (Parnell, J., editor). Geological Society Spec. Pub. 78.Google Scholar
Houghton, H.F. (1980) Refined techniques for staining plagioclase and alkali feldspars in thin sections. J.. Sed. Pet. 50, 629631.Google Scholar
Huang, W.L. (1992) Illitic-clay formation during experimental diagenesis of arkoses. Pp. 49–63 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittrnan, E.P., editors). Society for Economical Paleontology and Mineralogy Spec. Pub. 47.Google Scholar
Huc, A.Y. & Durand, B.M. (1977) Occurrence and significance of humic acids in ancient sediments. Fuel, 56, 7380.Google Scholar
Huggett, J.M. (1984) Controls on mineral authigenesis in coal measures sandstones of the East Midlands, UK. Clay Miner. 19, 343357.Google Scholar
Langenaeker, V. & Dusar, M. (1992) Subsurface facies analysis of the Namurian and earliest Westphalian in the Western part of the Campine basin (N-Belgium). Geologie en Mijnbouw, 71, 161–172.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.C. (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of the Netherlands. J. Sed. Res. 66, 501518.Google Scholar
Moncure, G., Lahann, R. & Siebert, R. (1984) Origin of secondary porosity and cement distribution in a sandstone/shale sequence from the Frio Formation (Oligocene). Am. Assoc. Petr. Mere. 37, 151163.Google Scholar
Muchez, Ph., Boven, J., Bouckaert, J., Leplat, P., Viaene, W. & Wolf, M. (1991) Illite erystallinity in the Carboniferous of the Campine-Brabant Basin (Belgium) and its relationship to organic maturity indicators. iV. Jahrb. Geol. Paleon. 182, 117131.Google Scholar
Mullis, A.M. (1992) A numerical model for porosity modification in a sandstone-mudstone boundary by quartz pressure dissolution and diffuse mass transfer. Sedimentol. 39, 99107.Google Scholar
Platt, J. (1993) Controls on clay mineral distribution and chemistry in the early Permian Rotliegend of Germany. Clay Miner. 28, 393416.Google Scholar
Tissot, B.P. & Welte, D.H. (1984) Petroleum Formation and Occurrence. Springer-Verlag, 2nd ed. Berlin.Google Scholar
VanKeer, I., Ondrak, R., Muchez Ph., Bayer, U., Dusar, M. & Viaene, W. (1997) Contrasting burial and thermal evolution of Westphalian coal-bearing strata in the Campine Basin (NE-Belgium): the importance of post-Paleozoic tectonism and heat flow. Geologic & Mijnbouw, (in press).Google Scholar
Vandenberghe, N. (1978) Sedimentology of the Boom Clay (Rupelian) in Belgium. Verh. Kon. Acad. Wet. Belgiä, Kl. Wet. XL, 147p.Google Scholar
Ziegler, P.A. (1982) Geological Atlas of Western and Central Europe. Elsevier, Amsterdam.Google Scholar