Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:11:33.410Z Has data issue: false hasContentIssue false

Clay mineral assemblages as palaeoclimatic indicators in a shallowing carbonate lacustrine system: Oligocene- Miocene, central Ebro Basin (NE Spain)

Published online by Cambridge University Press:  09 July 2018

M. J. Mayayo*
Affiliation:
Departamento des Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
A. Yuste
Affiliation:
Departamento des Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
A. Luzόn
Affiliation:
Departamento des Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
B. Bauluz
Affiliation:
Departamento des Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Abstract

This paper focuses on the clay mineralogy (using XRD, SEM and TEM methods) of the lacustrine “Calizas de Torrente de Cinca” unit that represents the Oligocene-Miocene transition in the central part of the Ebro Basin (NE Spain). Phyllosilicates are mainly detrital although Mgsmectites could have been generated in the lake.Although a temperate, relatively humid climate dominated the source area during the Oligocene-Miocene transition (Chattian-Aquitanian), as deduced by detrital phyllosilicates assemblage, mineralogical vertical trends along with sedimentological studies indicate some changes.Relatively warmer and more humid conditions during the late Chattian, that favoured increasing chemical weathering, were replaced during the early Aquitanian by drier conditions coinciding with the Mi-1 glaciation effects; this change is coeval with a transition from deeper to shallower lacustrine facies.Phyllosilicate association analysis has also permitted an improvement in the palaeogeographical sketch and infers that the Pyrenees are the main source area for the lacustrine system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez Sierra, M.A., Daams, R., Lacomba, J.I., Lόpez Martínez, N., van der Meulen, A.J., Sesé, C. & de Visser, J. (1990) Palaeontology and biostratigraphy (Micromammals) of the continental Oligocene-Miocene deposits of the North-Central Ebro Basin (Huesca, Spain). Scripta Geologica, 94, 177.Google Scholar
Banfield, J.F., Jones, B.F. & Veblen, D.R. (1991) An AEM—TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage. Geochimica et Cosmochima Ada, 55, 27952810.Google Scholar
Barahona, E. (1974) Ardllas de ladrilleria de la provincial de Granada; evaluation de algunos ensayos de materias primas. Ph.D. Thesis, Universidad de Granada, Espana.Google Scholar
Barberá, X., Parés, J.M., Cabrera, L. & Anadón, P. (1994) High-resolution magnetic stratigraphy across the Oligocene-Miocene boundary in an alluvial-lacustrine succession (Ebro Basin, northeast Spain). Physics of the Earth and Planetary Interiors, 85, 181193.CrossRefGoogle Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803831.Google Scholar
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125195 in: Crystal Structures of Clay Minerals and their X-Ray Identification. (G.W. Brindley G.W. & G. Brown, editors) Monograph 5, Mineralogical Society, London.CrossRefGoogle Scholar
Buurman, E., Meijer EX. & van Wijck, J.H. (1988) Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, northwestern Spain. Clays and Clay Minerals, 36, 263269.CrossRefGoogle Scholar
Cabrera, L. (1983) Estratigrafia y Sedimentologia de las formaciones lacustres del transito Oligoceno-Mioceno del SE de la Cuenca del Ebro. Tesis Doctoral, Universidad de Barcelona.Google Scholar
Cabrera, L., Inglès, M. & Barberá, X. (1998) Clay minerals distribution in alluvial and lacustrine late oligocene secuences of the Ebro basin (NE Spain): a record of changing paleohydrological conditions. 15th International Sedimentological Congress, 222-223.Google Scholar
Cavagnetto, C. & Anadón, P. (1996) Preliminary palynological data on floristic and climatic changes during the middle Eocene-early Oligocene of the eastern Ebro Basin, northeast Spain. Review of Palaeobotany and Palynology 92, 281305.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Chung, F.H. (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 526531.Google Scholar
Cuenca, G., Canudo, J.I., Laplana C & Andrés, J.A. (1992) Bio y cronoestratigrafia con mamiferos en la Cuenca Terciaria del Ebro: Ensayo de sintesis. Ada Geológica Hispánica, 27, 127144.Google Scholar
De Man, E. & Van Simaeys, S. (2004) Late Oligocene warming event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences, 83, 227239.Google Scholar
Ehrmann, W., Setti, M. & Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antartica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 187211.Google Scholar
Foster, M.D. (1960) Interpretation of the composition of trioctahedral micas. U.S. Geological Survey Professional Papers, 354-B, 1149.Google Scholar
Garcia-Castellanos, D., Verges, J., Gaspar-Escribano, J.M. & Cloetingh, S. (2003) Interplay between tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research, 108 (B7), 2347, 10.1029/ 2002JB002073.Google Scholar
Gomis, E. (1997) Precisión sobre la magnetoestratigrafia de las sucesiones del Oligocenosuperior-Mioceno en los valles del Cinca, Segre y Ebro (sector SE de la cuenca del Ebro, provincias de Lleida, Zaragoza y Huesca), M.Sc, Barcelona University, 92 pp.Google Scholar
Gomis, E., Parés, J.M. & Cabrera, L. (1999) Nuevos datos magnetoestratigraficos del transito Oligoceno-Mioceno en el sector SE de la Cuenca del Ebro (provincias de Lleida, Zaragoza y Huesca, NE de Espafia). Ada Geologica Hispanica, 32, 185199.Google Scholar
González, A. (1989) Analisis tectosedimentario del Terciario del borde SE de la Depresión del Ebro (sector bajoaragonés) y Cubetas Ibéricas Marginales. Ph.D. thesis, Universidad de Zaragoza, Espafia.Google Scholar
González López, J.M, Bauluz, B., Yuste, A., Mayayo, M.J. & Fernández-Nieto, C. (2005). Mineralogical and trace element composition of clay-sized fractions from Albian siliciclastic Rocks (Oliete Basin, NE Spain). Clay Minerals, 40, 565580.Google Scholar
Gradstein, F.M. & Ogg, J.G. (2004). Geologic time scale 2004—why, how and where next. Lethaia, 37, 175181.Google Scholar
Guven, N. (1988) Smectites. Pp 497-559 in: Hydrous Pyllosilicates. (S.W. Bailey, editor) Mineralogical Society of America, Reviews in Mineralogy, 19.Google Scholar
Huertas (1969) Los minerales fibrosos de la ardlla. Su genetica en cuencas sedimentarias espanolas y sus aplicaciones tecnologicas. Ph.D. thesis, University of Granada, Spain.Google Scholar
Inglès, M., Salvany, J.M., Muñoz, A. & Pérez, A. (1998) Relationship of mineralogy to depositional environments in the non-marine Tertiary mudstones of the southwestern Ebro Basin (Spain). Sedimentary Geology, 116, 159176.Google Scholar
Jenkins, R. & Snyder, R.L. (1996) Introduction to X-ray Powder Diffractornetry, John Wiley & Sons, New York, 432 pp.CrossRefGoogle Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. U.S. Geological Survey Bulletin, 1578, 291300.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp 631-674 in: Hydrous Phyllosilicates (S.W. Bailey, editor). Mineralogical Society of America, Reviews in Mineralogy, 19.Google Scholar
Lago, M., Galé, C, Arranz, E., Vaquer, R., Gil, A. & Pocovi, A. (2000) Triassic tholeiitic dolerites («ophites») of the El Grado diapir (Pyrenees, Huesca, Spain): emplacement and composition. Estudios Geológicos, 56, 318.Google Scholar
Luzón, A. (2001) Análisis tectosedimentario de los materiales terciarios continentales del sector central de la Cuenca del Ebro (provincias de Huesca y Zaragoza). Ph.D. thesis, Universidad de Zaragoza, Espafia.Google Scholar
Luzón, A. & González, A. (2000) Sedimentology and evolution of a Paleogene-Neogene shallow carbonate lacustrine system, Ebro Basin, Northeastern Spain. Pp. 407416 in: Lake Basins through Space and Time (E.H. Gierlowski-Kordesch & K.R. Kelts, editors), AAPG Studies in Geology, 46.Google Scholar
Luzón, A., González, A., Mufloz, A. & Sanchez-Valverde, B. (2002) Upper Oligocene-Lower Miocene shallowing upward lacustrine sequences controlled by periodic and non-periodic processes (Ebro Basin, northeastern Spain). Journal of Paleolimnology, 28, 441456.Google Scholar
Luzón, A., Mayayo, M.J., Yuste, A. & Bauluz, B. (2006) Estudio isotopico preliminar de los carbonates de la unidad lacustre Calizas de Torrente de Cinca (Cuenca del Ebro, NE. Espafia). Geotemas, 9, 149-152.Google Scholar
Luzón, A., Mayayo, M.J., Yuste, A. & Bauluz, B. (2009) Stable isotope characterization of the Torrente de Cinca lacustrine unit (Oligocene-Miocene transition, NE Spain): evidence for climatic change. 27th IAS Meeting Abstracts. Google Scholar
Madhavaraju, J., Ramasamy, S., Ruffell, A.H. & Mohan, S.P. (2002) Clay mineralogy of the Late Cretaceous and Early Tertiary Successions of the Cauvery Basin (southeastern India): Implications for sediment source and palaeoclimates at the K/T boundary. Cretaceous Research, 23, 153163.Google Scholar
Mayayo, M.J., Bauluz, B. & González-López, J.M. (2000) Variations in the chemistry of smectites from the Calatayud Basin (NE Spain). Clay Minerals, 35, 365374.Google Scholar
Millot, G. (1964) Geologie des Argiles. Paris, Masson et Cie Paris.Google Scholar
Millot, G. (1970) Geology of Clays. Masson et Cie. Paris.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals (2nd edition) New York (Oxford University Press).Google Scholar
Mosbrugger, V., Utescher, T. & Dilcher, D.L. (2005) Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, 102, 1496414969 .Google Scholar
Muñoz, A, Arenas, C, González, A, Luzón A, Pardo, G. & Pérez, A (2002) Ebro Basin (northeastern Spain). Pp. 301-309 in: Geology of Spain. (W. Gibbons & T. Moreno, editors) Geological Society of London.Google Scholar
Murakami, T., Isobe, H., Sato, T. & Ohnuki, T. (1996) Weathering of chlorite in a quartz-chlorite schist. Mineralogical and chemical changes. Clays and Clay Minerals, 44, 244256.Google Scholar
Pardo, G., Arenas, C, González, A., Luzón, A., Muñoz, A. & Pérez, A. (2004) Cuencas Cenozoicas: La Cuenca del Ebro. Pp. 343353 in: Geologia de Espana (J.A. Vera, editor). Sociedad Geologica de Espana e Institute Geologico y Minero de Espana.Google Scholar
Robert, C. & Kennett IP. (1994) Antarctic subtropical humid episode at the Paleocene-Eocene boundary—clay-mineral evidence. Geology, 22, 211214.Google Scholar
Rodriguez, D., Mayayo, M.J., Luzón, A., Bauluz, B. & Yuste, A. (2006) Contribution del analisis isotopico de carbonates en el estudio de la evolution de la unidad lacustre calizas de Torrente de Cinca (Cuenca del Ebro). Macla, 6, 403405.Google Scholar
Sakai, T., Minoura, K., Soma, M., Tani, Y., Tanaka, A., Nara, F., Itoh, N. & Kaway, T. (2005) Influence of climate fluctuation on clay formation in the Baikal drainage basin. Journal of Paleolimnology, 33, 105121.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geological Survey Professional Paper, 391C.Google Scholar
Singer, A. (1984) Pedogenic palygorskite in the arid environment. Pp. 169176 in: Palygorskite-Sepiolite. Occurrences, Genesis and Uses (A. Singer & E. Galan, editors). Developments in Sedimentology, 37. Elsevier-Amsterdam.Google Scholar
Thiry, M. (1989) Geochemical evolution and paleoenvir-onments of the Eocene continental deposits in the Paris Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 153163.CrossRefGoogle Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Reviews, 49, 201221.Google Scholar
Trauth, N. (1977) Argiles evaporitiques dans la sedi-mentation carbonate continentale et epicontinentale tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France) et du Jbel Ghassoul (Maroc). Sciences Gelogiques, Memoires, 49, Strasbourg.Google Scholar
Utescher, T., Djordjevic-Milutinovic, D., Bruch, A.A. & Mosbrugger, V. (2007) Palaeoclimate and vegetation change in Serbia during the last 30 Ma.Google Scholar
Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 141-152.Google Scholar
Velde, B. (1995) Composition and mineralogy of clay minerals. Pp. 842 in: Origin and mineralogy of clays (B. Velde, editor) New York, Springer-Verlag.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Developments in Sedimentology, 44. Elsevier.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, 15.Google Scholar
Yuste, A., Luzón, A. & Bauluz, B. (2004) Provenance of Oligocene-Miocene alluvial and fluvial fans of the northern Ebro Basin (NE Spain): an XKD, petro-graphic and SEM study. Sedimentary Geology, 172, 251268.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate: 65 Ma to present. Science, 292, 686-692.Google Scholar