Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:21:35.368Z Has data issue: false hasContentIssue false

Chemistry and mineralogy of some Lower and Middle Chalks from Givendale, East Yorkshire

Published online by Cambridge University Press:  09 July 2018

J. I. Pitman*
Affiliation:
School of Environmental Sciences, University of East Anglia, Norwich

Abstract

The chemical composition of nine samples of Lower and Middle Chalk from the Givendale area of Yorkshire was determined; acetic acid residues were mechanically, chemically and mineralogically analysed. All nine chalk samples proved to be exceptionally pure calcium carbonate (96±1·5%), with only small amounts of MgO (1·03±0·53%), Al2O2 (0·33±0·28%) and Fe2O2 (0·20±0·14%). Insoluble residues ranged from 1·07 to 4·46%. Clay formed 56–88% of the insoluble residue. The non-clay fraction consisted of flint, quartz, collophane, limonite, feldspar, tourmaline and zircon. The clay fractions were dominated by montmorillonite (50%) with secondary illite (30%), apatite (3%), and quartz (8–30%). Kaolinite was detected by X-ray diffraction in the Lower Chalk.

Résumé

Résumé

La composition chimique de neuf échantillons de calcaire des crétacés inférieur et moyen de la région de Givendale dans le Yorkshire a été déterminée et des résidus d'acide acétique ont été analysés mécaniquement, chimiquement et minéralogiquement. On a constaté que les neuf échantillons de calciare étaint tous du carbonate de calcium d'une pureté exceptionnelle (96 ± 1·5%), avec seulement de petites quantités de MgO (1·03 ± 0·53 %), Al2O3 (0·33 ± 0·28%) et Fe2O3 (0·20 ± 0·14%). Les résidus insolubles allaient de 1·07 à 4·46%. L'argile formait 56–88% des résidus insolubles. La fraction non argileuse consistait en silex, quartz, collophane, limonite, feldspath, tourmaline et zircon. Les fractions argileuses étaient dominées par de la montmorillonite (50%) avec de l'illite secondaire (30%), de l'apatite (3%) et du quartz (8–30%). De la kaolinite a été détectée par diffraction des rayons X dans le crétacé inférieur.

Kurzreferat

Kurzreferat

Es wurde die chemische Zusammensetzung von neun Proben aus dem Lower und Middle Chalk des Givendale Gebietes von Yorkshire bestimmt. Die Rückstände aus dem Essigsäureaufschluss wurden mechanisch, chemisch und mineralogisch analysiert. Alle neun Kalkproben erwiesen sich als äusserst reines Kalziumkarbonat (96 ± 1·5%), mit nur geringen Anteilen an MgO (1·03 ± 0·53%), Al2O3 (0·33 ± 0·24%) und Fe2O3 (0·20 ± 0·14%). Der Anteil der unlöslichen Rückstande lag zwischen 1·07 und 4·46%. Der Tonanteil bildete 56 bis 88% des unlöslichen Rückstandes. Die Nicht-Tonfraktion bestand aus Flint, Quarz, Kollophan, Limonit, Feldspat, Turmalin und Zirkon. Die Tonfraktionen enthielten überwiegend Montmorillonit (50%) und Quarz (8–30%).

Kaolinit wurde röntgenographisch in dem Lower Chalk nachgewiesen.

Resumen

Resumen

Se ha determinado la composición química de nueve muestras de creta de las formaciones inferior y media de la zona de Givendale del condado de Yorkshire; se han analizado mecánica, química y mineralógicamente los residuos de ácido acético. Las nueve muestras resultaron ser carbonato cálcico excepcionalmente puro (96 ± 1·5%), con sólo pequeñas cantidades de MgO (1·03 ± 0·53%), Al2O3 (0·33 ± 0·28%) y Fe2O3 (0·20 ± 0·14%). Los residuos insolubles variaban desde 1·07 hasta 4·46%. La fracción no arcillosa consistía en pedernal, cuarzo, colófana, limonita, feldespato, turmalina y circón. Las fracciones de arcilla estaban dominadas por montmorillonita (50%) con ilita secundaria (30%), apatita (3%) y cuarzo (8–30%). Se detectó caolinita por difracción de rayos X en la creta inferior.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, I. (1965) Methods of Soil Analysis (Black, C. A., editor), Chap. 50, p. 699. American Society of Agronomy, Madison, U.S.A.Google Scholar
Bonte, A. & Debrabrant, P. (1973) Ann. Soc. Geol. Nord, 93, 2.Google Scholar
Bradley, W.F. & Grim, R.E. (1961) The X-Ray Identification and Crystal Structures of Clay Minerals (G. Brown, editor), Chap V, p. 208. Mineralogical Society, London.Google Scholar
British Standards Institution. Determination of Particle Size, B.S.I. 1377, p. 55Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals, 2nd edn (G. Brown, editor), Chap. 8, p. 467. Mineralogical Society, London.Google Scholar
Brown, G. & OLLIER C D . (1956) Mineralog. Mag. 31, 339.Google Scholar
Carroll, D. (1970) Clay Minerals: A Guide to their X-ray Identification. Geological Society of America, Special Paper 126, Colorado, U.S.A.Google Scholar
Chapman, H.D. (1965) Methods of Soil Analysis (Black, C. A., editor), Chap. 57, p. 891. American Society of Agronomy, Madison, U.S.A.Google Scholar
Hancock, J.M. (1975) Proc. Geol. Ass. 86, 499.Google Scholar
Hill, W. (1888) Quart. J. Geol. Soc. 44, 320.Google Scholar
Imbrie, J. & Poldevaart, A. (1959) J . Sed. Petrol, 29, 588.Google Scholar
Jeans, C.V. (1968) Clay Min. Bull. 7, 311.Google Scholar
Jackson, M.L. (1965) Methods of Soil Analysis (Black, C. A., editor), Chap. 45, p. 578. American Society of Agronomy, Madison, U.S.A.Google Scholar
Kiely, P.V. & Jackson, M.L. (1964) Am. Mineralog. 49, 1648.Google Scholar
Paulson, G. (1974) Or tec X-ray Analytical Studies, July 1974 (XAS 23).Google Scholar
Perrin, R.M. (1956) Nature, 178, 31.CrossRefGoogle Scholar
Perrin, R.M.S. (1957) Clay Min. Bull. 3, 193.CrossRefGoogle Scholar
Perrin, R.M.S. (1964) Analysis of Calcareous Materials, p. 207, Society for the Chemical Industry, Monograph 18, London.Google Scholar
Perrin, R.M.S. (1971) The Clay Mineralogy of British Sediments. Mineralogical Society, London.Google Scholar
Pitman, J.I. (1977) The geochemistry of some waters draining the chalk of East Yorkshire. Ph.D. Thesis, University of Hull.Google Scholar
Pitman, J.I. (1977) Paper presented to the Triennial Meeting of the Mineralogical Society, Leeds, Solid-Fluid Interaction.Google Scholar
Pratt, R.F. (1965) Methods of Soil Analysis (Black, C. A., editor), Chap. 70, p. 1019. American Society of Agronomy, Madison, U.S.A.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
Weir, A.H. & Catt, J.A. (1965) Clay Miner. 6, 97.Google Scholar
Wright, C.W. & Wright, E.V. (1942) Proc. Geol. Ass. 53, 112.Google Scholar
Yoshinori, K. & Sherman, G.D. (1975) Methods of Soil Analysis (Black, C. A., editor), Chap. 63, p. 933. American Society of Agronomy, Madison, U.S.A.Google Scholar
Young, B.R. (1965) Bull. Geol. Surv. G.B. 23, 110.Google Scholar