Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T17:09:39.633Z Has data issue: false hasContentIssue false

Characterization of halloysite (North East Rif, Morocco): evaluation of its suitability for the ceramics industry

Published online by Cambridge University Press:  14 March 2018

Abdelilah El Haddar
Affiliation:
Laboratory of Applied Geosciences, Faculty of Sciences, University of Mohammed 1, Oujda, Morocco
Elkhadir Gharibi
Affiliation:
Laboratory of Mineral and Analytical Solid Chemistry, Faculty of Sciences, University of Mohammed 1, Oujda, Morocco
Ali Azdimousa
Affiliation:
Laboratory of Applied Geosciences, Faculty of Sciences, University of Mohammed 1, Oujda, Morocco
Nathalie Fagel
Affiliation:
UR. Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Quartier Agora, Bâtiment B18, Allée du 6 Août, 14, Sart-Tilman, Université de Liège, B-4000, Belgium
Iz-Eddine El Amrani El Hassani
Affiliation:
Geomaterial & Geoenvironment Team, GEOPAC Centre, Scientific Institute, Mohammed V, University of Rabat, Morocco
Meriam El Ouahabi*
Affiliation:
UR. Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Quartier Agora, Bâtiment B18, Allée du 6 Août, 14, Sart-Tilman, Université de Liège, B-4000, Belgium
*

Abstract

A halloysite clay from Nador (NE Morocco) was studied to evaluate its suitability in the ceramics industry. A cross-section involving all the Messinian facies was performed in the Melilla Neogene basin, at the foot of the Gourougou volcano, to establish the origin of the halloysite and estimate its reserves. White layers of halloysite and red clays rich in smectite occurring in contact with basal-reef limestone were characterized by mineralogical (XRD, IR), textural (SEM) and physico-chemical analyses (grain-size, Atterberg limits, DTA/TG, XRF and specific surface area). Ceramic properties were evaluated for halloysite fired from 500 to 1100°C to evaluate technical processing for ceramic production.

The halloysite clay consists of fine particles with a high plasticity and a large specific surface area. The XRD investigation revealed the presence of 7 Å non-hydrated halloysite along with gibbsite, alunite, K-feldspar and traces of smectite and illite.

The presence of halloysite was confirmed from the characteristic IR bands at 3695 and 3618 cm−1 and the predominance of tubular crystals observed in the SEM. The chemical analysis revealed high contents linked to the presence of Al-rich phases (gibbsite and alunite). DTA/TG and XRD results of fired clay samples proved the dehydroxylation of halloysite and a rearrangement of metakaolinite to form mullite and spinel at 975°C.

The Moroccan halloysite might be suitable for refractory ceramic applications. However, addition of quartz sand might be necessary to avoid crack development during firing and to reduce the plasticity of raw halloysite and minimize shrinkage during sintering.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: João Labrincha

References

REFERENCES

Abdullah, M.A., Afzaal, M. & Ismail, Z. (2015) Comparative study on structural modification of Ceiba pentandra for oil sorption and palm oil mill effluent treatment. Desalination and Water Treatment, 54, 30443053.CrossRefGoogle Scholar
Abdullayev, E. & Lvov, Y. (2010) Clay nanotubes for corrosion inhibitor encapsulation: Release control with end stoppers. Journal of Materials Chemistry, 20, 66816687.Google Scholar
Abdullayev, E., Abbasov, V., Tursunbayeva, A., Portnov, V., Ibrahimov, H., Mukhtarova, G. & Lvov, Y. (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Applied Materials & Interfaces, 5, 44644471.Google Scholar
Aliprandi, G., Porfirione, M.A., Jouenne, C.A. & Beruto, D. (1996) Matériaux Réfractaires et Céramiques Techniques: Éléments de Céramique et de Technologie. Septima, Paris.Google Scholar
Allaoui, A., Haïmeur, J., El Amrani, E.I. & Ahmamou, M. (2005) Caractérisation chimico-minéralogique et technologique des argiles de Khémisset : intérêt en industrie de la terre cuite. Les Cahiers de la Recherche - Série A, Sciences et Techniques, Université Hassan II, Ain Chock, Casablanca, Maroc, 6.Google Scholar
Anton, O. & Rouxhet, P. G. (1977) Note on the intercalation of kaolinite, dickite and halloysite by dimethyl-sulfoxide. Clays and Clay Minerals, 25, 259263.CrossRefGoogle Scholar
ASTM C326-03, Standard test method for drying and firing shrinkages of ceramic whiteware clays, 15–02, Verre et céramique.Google Scholar
ASTM C674-88, Standard test methods for flexural properties of ceramic whiteware materials, 15–02, Verre et céramique.Google Scholar
Azdimousa, A. (1991) La géologie des bordures méridionales de la mer d'Alboran des Temsamane jusqu'au cap des Trois Fourches (Rif oriental, Maroc). Master's thesis, Oujda University, Morocco.Google Scholar
Bailey, S.W. (1988) Kaolin minerals: structures and stabilities. Pp. 29–66 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Bain, J.A. (1971) A plasticity chart as an aid to the identification and assessment of industrial clays. Clay Minerals, 9, 117.Google Scholar
Bechtel, A., Savin, S.M. & Hoernes, S. (1999) Oxygen and hydrogen isotopic composition of clay minerals of the Bahloul Formation in the region of the Bou Grine zinc?lead ore deposit (Tunisia): evidence for fluid?rock interaction in the vicinity of salt dome cap rock. Chemical Geology, 156, 191207.Google Scholar
Bell, V.A. (1991) Effect of pellet pressing on the infrared spectrum of kaolinite. Clays and Clay Minerals, 39, 290292.Google Scholar
Blanc, P., Piantone, P., Lassin, A. & Burnol, A. (2006) Thermochimie: Sélection de constantes thermodynamiques pour les éléments majeurs, le plomb et le cadmium. Final report: BRGM RP-54902-FR.Google Scholar
Bordeepong, S., Bhongsuwan, D., Pungrassami, T. & Bhongsuwan, T. (2011) Characterization of halloysite from Thung Yai District, Nakhon Si Thammarat Province, in Southern Thailand. Songklanakarin. Journal of Science & Technology, 33, 599607.Google Scholar
Caillère, S. & Hénin, S. (1982) Clay Minerals. I. Structure and Physicochemical Properties (Ed. 2). Masson, Paris.Google Scholar
Carty, W.M. & Senapati, U. (1998) Porcelain raw materials, processing, phase evolution, and mechanical behavior. Journal of the American Ceramic Society, 81, 320.Google Scholar
Casagrande, A. (1947) Plasticity chart for the classification of cohesive soils. Transactions of the American Society of Civil Engineers, 783811.Google Scholar
Chaari, I., Moussi, B. & Jamoussi, F. (2015) Interactions of the dye, CI direct orange 34 with natural clay. Journal of Alloys and Compounds, 647, 720727.Google Scholar
Chen, Y., Zhang, Y., Liu, J., Zhang, H. & Wang, K. (2012) Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chemical Engineering Journal, 210, 298308.Google Scholar
Choubert, G., Charlot, R., Faure-Muret, A., Hottinger, L., Marcais, J., Tisserant, D. & Vidal, P. (1968) Note préliminaire sur le volcanisme Messinien-(Pontien) au Maroc. Comptes Rendus de l'Academie des Science, Paris, 266, 197199.Google Scholar
Churchman, G.J., Pasbakhsh, P. & Hillier, S. (2016) The rise and rise of halloysite. Clay Minerals, 51, 303308.Google Scholar
De Souza Santos, H., Campos, T.W., De Souza Santos, P. & Kiyohara, P.K. (2005) Thermal phase sequences in gibbsite/kaolinite clay: electron microscopy studies. Ceramics International, 8, 10771084.Google Scholar
Detellier, C. & Schoonheydt, R.A. (2014) From platy kaolinite to nanorolls. Elements, 10, 201206.Google Scholar
Duan, R.G., Liang, K.M. & Gu, S.R. (1999) The effect of additives on the crystallization of Na2O–CaO–MgO–Al2O3–SiO2–TiO2 system glasses. Journal of Materials Processing Technology, 87, 192197.Google Scholar
El Amrani El Hassani, I. & Sadik, C. (2016) Geology and mineralogy of clays for nanocomposites: state of knowledge and methodology. Pp. 85113 in: Nanoclay Reinforced Polymer Composites. Springer, Singapore.Google Scholar
El Ouahabi, M., Daoudi, L. & Fagel, N. (2014) Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry. Clay Minerals, 49, 3551.Google Scholar
Földvári, M. (2011) Handbook of Thermogravimetric System of Minerals and its Use in Geological Practice. Geological Institute of Hungary, Budapest.Google Scholar
García-Dueñas, V., Balanyá, J.C. & Martínez-Martínez, J.M. (1992) Miocene extensional detachments in the outcropping basement of the northern Alboran basin (Betics) and their tectonic implications. Geo-Marine Letters, 12, 8895.Google Scholar
Gírela Vilchez, F. (1961) Estudio del yacimiento de haloisita del Monte Maazza (Marruecos), con una contribución a la técnica de ATD y al análisis mineralógico cuantitativo de arcillas. PhD thesis. University of Granada (unpublished), Spain.Google Scholar
Guillemin, M. & Houzay, J.P. (1982) Le Néogène post-nappes et le Quaternaire du Rif nord-oriental; Stratigraphie et tectonique des bassins de Melilla, du Kert, de Boudinar et du piedmont des Kebdana. Editions du Service Géologique du Maroc.Google Scholar
Guerraoui, F., Zamama, M. & Ibnoussina, M. (2008) Mineralogical and geotechnical characterization of clays used in ceramics in Safi (Morocco). African Journal of Science and Technology, Science and Engineering Series, 9, 111.Google Scholar
Hilali, E.A. & Jeannette, A. (1981) Kaolin et Argiles Céramiques. Pp. 4447 in: Roches et Minéraux Industriels, n° spécial publié par Le Ministère d'Energie et des Mines du Maroc.Google Scholar
Hofmann, U., Kottenhahn, H. & Morcos, S. (1966) Adsorption of methylene blue on clays. Angewandte Chemie (International Edition in English), 5, 247248.Google Scholar
Iqbal, Y & Lee, W.E. (2000) Microstructural evolution in triaxial porcelain. Journal of the American Ceramic Society, 83, 31213127.Google Scholar
Ishikawa, Y., Sawaguchi, T., Iwaya, S. & Horiuchi, M. (1976) Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration haloes. Mining Geology, 26, 105117.Google Scholar
Jeannette, A., Monition, A. & Ortelli, L. (1958) Présence d'halloysite à 10 Å dans les niveaux bentonitiques Pliocenes du gite de Maazza (Rif Oriental). Notes Serv. Geol. Maroc, 16, 242249.Google Scholar
Jemaï, M.B., Sdiri, A., Errais, E., Duplay, J., Saleh, I. B., Zagrarni, M. F. & Bouaziz, S. (2015) Characterization of the Ain Khemouda halloysite (western Tunisia) for ceramic industry. Journal of African Earth Sciences, 111, 194201.Google Scholar
Jin, J., Zhang, Y., Ouyang, J. & Yang, H. (2014) Halloysite nanotubes as hydrogen storage materials. Physics and Chemistry of Minerals, 41, 323331.Google Scholar
Johnson, S.L., Guggenheim, S. & Van Groos, A.F. (1990) Thermal stability of halloysite by high-pressure differential thermal analysis. Clays and Clay Minerals, 38, 477484.CrossRefGoogle Scholar
Jouenne, C.A. (1990) Traité de Céramique et De Matériaux Minéraux. Pp. 100120. Ed. Septima, Paris.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals – a review. Clay Minerals, 40, 383426.Google Scholar
Kakali, G., Perraki, T.H., Tsivilis, S. & Badogiannis, E. (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 7380.Google Scholar
Lee, W.E., Souza, G.P., McConville, C.J., Tarvornpanich, T. & Iqbal, Y. (2008) Mullite formation in clays and clay-derived vitreous ceramics. Journal of the European Ceramic Society, 28, 465471.Google Scholar
Levis, S.R. & Deasy, P.B. (2002) Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics, 243, 125134.Google Scholar
Lu, Y., Wang, R., Lu, X., Li, J. & Wang, T. (2016) Reprint of genesis of halloysite from the weathering of muscovite: Insights from microscopic observations of a weathered granite in the Gaoling Area, Jingdezhen, China. Applied Clay Science, 119, 5966.CrossRefGoogle Scholar
Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y. & Liu, J. (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research, 44, 14891497.Google Scholar
Lvov, Y. & Abdullayev, E. (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38, 16901719.Google Scholar
Lvov, Y.M., Shchukin, D.G., Mohwald, H. & Price, R.R. (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano, 2, 814820.Google Scholar
Martin Vivaldi, J. L. (1961) The bentonites of Cabo de Gata (South-east Spain) and of Guelaya volcanic province (North Morocco). Clays and Clay Min., Proc. 10th Nat. Conf.Google Scholar
Martin Vivaldi, J.L. & Gírela Vilchez, F. (1958) A study of the halloysite from Maazza. Silicates Industriel, 24, 380385.Google Scholar
Martín-Márquez, J., Rincón, J.M. & Romero, M. (2010) Mullite development on firing in porcelain stoneware bodies. Journal of the European Ceramic Society, 30, 15991607.Google Scholar
Mellouk, S., Cherifi, S., Sassi, M., Marouf-Khelifa, K., Bengueddach, A., Schott, J. & Khelifa, A. (2009) Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions. Applied Clay Science, 44, 230236.Google Scholar
Minato, H. & Aoki, M. (1979) Rate of transformation of halloysite to métahalloysite under hydrothermal conditions. Developments in Sedimentology, 27, 619627.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Moussi, B., Medhioub, M., Hatira, N., Yans, J., Hajjaji, W., Rocha, F., Labrincha, J. A. & Jamoussi, F. (2011) Identification and use of white clayey deposits from the area of Tamra (northern Tunisia) as ceramic raw materials. Clay Minerals, 46, 165175.Google Scholar
Muthu, R.N., Rajashabala, S. & Kannan, R. (2016) Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renewable Energy, 90, 554564.Google Scholar
Pagani, A., Francescon, F., Pavese, A. & Diella, V. (2010) Sanitary-ware vitreous body characterization method by optical microscopy, elemental maps, image processing and X-ray powder diffraction. Journal of the European Ceramic Society, 30, 12671275.Google Scholar
Pan, J., Yao, H., Xu, L., Ou, H., Huo, P., Li, X. & Yan, Y. (2011) Selective recognition of 2, 4, 6-trichlorophenol by molecularly imprinted polymers based on magnetic halloysite nanotubes composites. The Journal of Physical Chemistry C, 115, 54405449.Google Scholar
Pasbakhsh, P., Churchman, G.J. & Keeling, J.L. (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 4757.Google Scholar
Pracejus, B., Abbasi, I. A., Al-Khirbash, S. & Al-Aamri, M. (2017) Nature, genesis and industrial properties of the kaolin from Masirah Island, Oman. Clay Minerals, 52, 275297.Google Scholar
Prodanović, D., Živković, Ž.B. & Radosavljević, S. (1997) Kinetics of the dehydroxylation and mullitization processes of the halloysite from the Farbani Potok locality, Serbia. Applied Clay Science, 12, 267274.Google Scholar
Qtaitat, M.A. & Al-Trawneh, I.N. (2005) Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 15191523.Google Scholar
Raghdi, A., Heraiz, M., Sahnoune, F. & Saheb, N. (2017) Mullite-zirconia composites prepared from halloysite reaction sintered with boehmite and zirconia. Applied Clay Science, 146, 7080.Google Scholar
Renac, C. & Assassi, F. (2009) Formation of non-expandable 7 Å halloysite during Eocene–Miocene continental weathering at Djebel Debbagh, Algeria: A geochemical and stable-isotope study. Sedimentary Geology, 217, 140153.Google Scholar
Rollet, A.P. & Bouaziz, R. (1972) L'analyse thermique. L'examen des processus chimiques. Gauthier-Villars, France.Google Scholar
Ruiz-Hitzky, E., Ariga, K. & Lvov, Y.M. (2008) Bio-inorganic Hybrid Nanomaterials: Strategies, Synthesis, Characterization and Applications. John Wiley & Sons, New Jersey, USA.Google Scholar
Saikia, B.J. & Parthasarathy, G. (2010) Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics, 1, 206210.Google Scholar
Schroeder, P.A. & Erickson, G. (2014) Kaolin: From ancient porcelains to nanocomposites. Elements, 10, 177182.Google Scholar
Shanks, W.P., Koski, R.A., Mosier, D.L., Schulz, K.J., Morgan, L.A., Slack, J.F., Ridley, W.I., Dusel-Bacon, C., Robert, R., Seal, I.I. & Piatak, N.M. (2012) Volcanogenic massive sulfide occurrence model: Chapter C In Mineral deposit models for resource assessment (No. 2010-5070-C). US Geological Survey.Google Scholar
Shchukin, D., Price, R., Sukhorukov, G. & Lvov, Y. (2005) Biomimetic synthesis of vaterite in the interior of clay nanotubules. Small, 1, 510513.Google Scholar
Singer, A., Zarei, M., Lange, F.M. & Stahr, K. (2004) Halloysite characteristics and formation in the northern Golan Heights. Geoderma, 123, 279295.Google Scholar
Souza, G.P., Messer, P.F. & Lee, W.E. (2006) Effect of varying quartz particle size and firing atmosphere on densification of Brazilian clay-based stoneware. Journal of the American Ceramic Society, 89, 19932002.Google Scholar
Tan, D., Yuan, P., Annabi-Bergaya, F., Liu, D., Wang, L., Liu, H. & He, H. (2014) Loading and in vitro release of ibuprofen in tubular halloysite. Applied Clay Science, 96, 5055.Google Scholar
Toprak, M.U. & Arslanbaba, M.A. (2016) Possibility of using Kütahya Volcanic Tuff as building stone: Microstructural evaluation and strength enhancement through heat treatment. Construction and Building Materials, 110, 128134.Google Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier Publishing Company.Google Scholar
Williams, L.B. & Hillier, S. (2014) Kaolins and health: from first grade to first aid. Elements, 10, 207211.Google Scholar
Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.Google Scholar
Yariv, S. (1975) Infrared study of the interaction between caesium chloride and kaolinite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71, 674684.Google Scholar
Yuan, P., Southon, P.D., Liu, Z. & Kepert, C.J. (2012) Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology, 23, 375705.Google Scholar
Yuan, P., Tan, D., Aannabi-Bergaya, F., Yan, W., Fan, M., Liu, D. & He, H. (2012) Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60, 561573.Google Scholar
Zhang, Y., Chen, Y., Zhang, H., Zhang, B. & Liu, J. (2013) Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. Journal of Inorganic Biochemistry, 118, 5964.Google Scholar
Zhao, Y., Zhang, B., Zhang, X., Wang, J., Liu, J. & Chen, R. (2010a) Ammonium removal from aqueous solution by zeolite X synthesized from halloysite mineral. Water Science and Technology, 62, 937946.Google Scholar
Zhao, Y., Zhang, B., Zhang, X., Wang, J., Liu, J. & Chen, R. (2010b) Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions. Journal of Hazardous Materials, 178, 658664.Google Scholar
Zhou, C.H. & Keeling, J. (2013) Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Applied Clay Science, 74, 39.CrossRefGoogle Scholar
Zhou, W.Y., Guo, B., Liu, M., Liao, R., Rabie, A.B.M. & Jia, D. (2010) Poly (vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. Journal of Biomedical Materials Research Part A, 93, 15741587.Google Scholar