Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T17:52:57.007Z Has data issue: false hasContentIssue false

Characterization of clays from the Foumban region (west Cameroon) and evaluation for refractory brick manufacture

Published online by Cambridge University Press:  04 September 2018

A. Pountouenchi*
Affiliation:
Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, 812, Yaoundé, Cameroon
D. Njoya
Affiliation:
Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, 812, Yaoundé, Cameroon
A. Njoya
Affiliation:
Department of Arts, Technology and Heritage, Institute of Fine Arts of Foumban, University of Dschang 31, Foumban, Cameroon
D. Rabibisao
Affiliation:
Material Department, Higher Polytechnique School, 101, Antananarivo, Madagascar.
J.R. Mache
Affiliation:
MIPROMALO, Yaoundé, Cameroon
R.F. Yongue
Affiliation:
Department of Earth Sciences, University of Yaoundé I, 812, Yaoundé, Cameroon
D. Njopwouo
Affiliation:
Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, 812, Yaoundé, Cameroon
N. Fagel
Affiliation:
AGEs, Department of Geology, University of Liege, Allée du six août, 14, Liege, Belgium
P. Pilate
Affiliation:
Belgian Ceramic Research Centre, Governor Cornez avenue 4, 7000, Mons, Belgium
L. Van Parys
Affiliation:
Materials Research Institute, University of Mons, Place du parc 2, 7000, Mons, Belgium
*

Abstract

Three clayey materials named MY3, KK and KG originating from the Foumban region (west Cameroon) were analysed to determine their granulometry, plasticity, major-element chemistry and mineralogy. Dilatometric and ceramic behaviour were also investigated. Clays were shaped by uniaxial pressing in a steel mould. Shaped samples were heated at 1300, 1400 and 1500°C. The end products were characterized in terms of their density, porosity and compressive strength. Raw materials differ in terms of their mineralogical composition, grain-size distribution, Al2O3 content and the nature and abundance of impurities inducing specific thermal behaviour during dilatometric analysis and sintering tests. The final material properties may be related to the main features of the raw materials used.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the session: ‘CZ-01 – Clays for ceramics’ of the International Clay Conference 2017.

Guest Associate Editor: Michele Dondi

References

REFERENCES

Aliprandi, G. (1979) Matériaux Réfractaires et Céramique Techniques. Septima, Paris, France.Google Scholar
Amrane, B., Ouedraogo, E., Mamen, B., Djaknoun, S. & Mesrati, N. (2011) Experimental study of thermo-mechanical behaviour of alumina–silicate refractory materials based on a mixture of Algerian kaolinitic clays. Ceramics International, 37, 32173227.Google Scholar
Bakr, I.M. (2011) Densification behavior, phase transformations, microstructure and mechanical properties of fired Egyptian kaolins. Applied Clay Science, 52, 333337.Google Scholar
Bennett, H. & Oliver, G.J. (1976) Development of fluxes for the analysis of ceramic materials by X-ray fluorescence spectrometry. Analytical Journal of Chemical Society, 101(1207), 761832.Google Scholar
Chavez, G.J. &. Johns, W.D. (1995) Mineralogical and ceramic properties of refractory clays from central Missouri (USA). Applied Clay Science, 9, 407424.Google Scholar
Chen, C.Y., Lan, G.S. & Tuan, W.H. (2000) Microstructural evolution of mullite during the sintering of kaolin powder compacts. Ceramics International, 26, 715720.Google Scholar
Djangang, C.N., Elimbi, A., Melo, V.C., Lecomte, G.L., Nkoumbou, C., Soro, J., Bonnet, J.P., Blanchart, P. & Njopwouo, D. (2007) Characteristics and ceramic properties of clays from Mayoum deposit (west Cameroon). Ceramics International, 33(4), 7988.Google Scholar
Djangang, C.N., Elimbi, A., Melo, V.C., Lecomte, G.L., Nkoumbou, C., Soro, J., Bonnet, J.P., Blanchart, P. & Njopwouo, D. (2008) Sintering of clay–chamotte ceramic composites for refractory bricks. Ceramics International, 34, 12071213.Google Scholar
Djangang, C.N., Lecomte, G.L., Elimbi, A., Blanchart, P. & Njopwouo, D. (2010) Elaboration des céramiques poreuses à base de sciure de bois. Anales de Chimie, 35, 116.Google Scholar
El Yacoubi, N., Aberkan, M. & Ouadia, M. (2006) Potentialité d'utilisation d'argiles marocaines de Jbel Kharrou dans l'industrie céramique. Compte Rendus Geoscience, 338, 693702.Google Scholar
Gualtieri, A. & Bertolani, M. (1992) Mullite and cristobalite formation in fired products starting from halloysitic clay. Applied Clay Science, 7, 251262.Google Scholar
ISO 10081-1 (2003) Classification of Dense Shaped Refractory Products – Part 1: Alumina–Silica.Google Scholar
Jouenne, C.A. (1984) Traité de Céramiques et Matériaux Minéraux. Septima, Paris.Google Scholar
Jourdain, A. (1966) Technologie des Produits Céramiques Réfractaires. Edition, Paris, France.Google Scholar
Kolli, M., Hamidouche, M., Fantozzi, G. & Chevalier, J. (2007) Elaboration and characterization of a refractory based on Algerian kaolin. Ceramics International, 33, 14351443.Google Scholar
Lapoujade, P. & Le Mat, Y. (1986) Traité Pratique sur l'Utilisation des Produits Réfractaires. Edition, Dourdan, France.Google Scholar
Kornmann, M. & Ingénieurs du Centre Technique des Tuiles et Briques (2005) Matériaux de Construction en Terre Cuite, Fabrication et Propriétés. Editions Septima, Paris.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin, N.A., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (west Cameroon). Applied Clay Science, 32, 125140.Google Scholar
Njoya, A. (2007) Etude du Gisement de Kaolin de Mayouom (Ouest-Cameroun): Cartographie, Minéralogie et Géochimie. PhD doctoral thesis, Université de Yaoundé I, Yaoundé, Cameroon.Google Scholar
Nkalih, M.A. (2016) Cartographie et Propriétés Physico-Chimiques des Argiles de Foumban (Ouest-Cameroun), PhD doctoral thesis, Université de Yaoundé I, Yaoundé, Cameroon.Google Scholar
Nkalih, M.A., Njoya, A., Yongue, F.R., Tapon, N.A., Nzeukou, N.A., Mache, J.R., Siniapkine, S., Flament, P., Melo, C.U., Ngono, A. & Fagel, N. (2015) Kaolin occurrence in Koutaba (west-Cameroon): Mineralogical and physicochemical characterization for ceramic products. Clay Mineral, 50, 593606.Google Scholar
Pialy, P., Tessier, D.N., Njopwouo, D. & Bonnet, J.P. (2009) Effects of densification and mullitization on the evolution of the elastic properties of a clay-based material during firing. Journal of the European Ceramic Society, 29, 15791586.Google Scholar
Poirier, J. (2011) Les céramiques réfractaires de l’élaboration aux propriétés d'emploi. Verres Ceramiques & Composites, 1(2), 2842.Google Scholar
Reynolds, R.C. & Moore, D.M. (1989) Principles and Techniques of Quantitative Analysis of Clay Minerals by X-Ray Powder Diffraction. Oxford University Press, New York.Google Scholar
Ribeiro, M.J., Tulyagavov, D.U., Ferreira, J.M. & Labrincha, J.A. (2005) High temperature mullite dissolution in ceramic bodies derived from Al-rich sludge. Journal of the European Ceramic Society, 25, 703710.Google Scholar
Routschka, G. (2004) Refractory Materials. 2nd Edition, Vulkan-Verlag, Essen, Germany.Google Scholar
Routschka, G. & Wuthnow, H. (2012) Handbook of Refractory Materials. 4th Edition, Vulkan-Verlag, Essen, Germany.Google Scholar
Sadik, C., El Amrani, I. & Albizane, A. (2014) Recent advances in silica–alumina refractory: a review. Journal of Asian Ceramic Societies, 2, 8396.Google Scholar
Sahnoune, F., Chegaar, M., Saheb, N., Goeuriot, P. & Valdivieso, F. (2008) Algerian kaolinite used for mullite formation. Applied Clay Science, 38, 304310.Google Scholar
Seynou, M., Flament, P., Sawadogo, M., Tirlocq, J. & Ouedraogo, R. (2013) Formulation de briques réfractaires à base de matières premières kaolinitiques de Tikaré (Burkina Faso). Journal de la Société Ouest-Africaine de Chimie, 35, 4956.Google Scholar
Staphen, C.C. & Gordon, L.B. (1992) Handbook of Industrial Refractories Technology: Principles, Types, Properties and Applications. 1st Edition. William Andrew, Norwich, NY.Google Scholar
Tassongwa, B., Nkoumbou, C., Njoya, D., Njoya, A., Tchop, J.L., Yvon, J. & Njopwouo, D. (2014) Geochemical and mineralogical characteristics of the Mayouom kaolin deposit, west Cameroon. Earth Science Research, 3(1), 14.Google Scholar
Tchamba, A.B., Melo, U.C., Yongue, R. & Njopwouo, D. (2011) Phase and microstructure evolution during densification of bauxite of Haleo-Danielle (Minim-Martap, Cameroon) between 1000 and 1600°C. International Journal of Materials Science, 6(1), 89100.Google Scholar
Zerbo, L., Sorgho, B., Kam, S., Soro, J., Millogo, Y., Guel, B., Traoré, K., Gomina, M. & Blanchart, P. (2012) Comportement thermique de céramiques à base d'argiles naturelles du Burkina Faso. Journal de la Société Ouest-Africaine de Chimie, 34, 4856.Google Scholar