Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:28:33.525Z Has data issue: false hasContentIssue false

Characterization of Brazilian palygorskite (Guadalupe region) and adsorptive behaviour for solvatochromic dyes

Published online by Cambridge University Press:  28 April 2021

Cristiane Gimenes de Souza*
Affiliation:
Program in Nanotechnology Engineering, COPPE, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-909, Brazil
Tammy Caroline Lima de Jesus
Affiliation:
Program in Nanotechnology Engineering, COPPE, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-909, Brazil
Rafael Cavalcante dos Santos
Affiliation:
Program in Chemical and Biochemical Process Engineering, School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-909, Brazil
Lívia Melo Bomfim
Affiliation:
School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-909, Brazil
Luiz Carlos Bertolino
Affiliation:
Mineral Technology Center (CETEM), Cidade Universitária, Rio de Janeiro, CEP21941-908, Brazil
Débora França de Andrade
Affiliation:
Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-908, Brazil
Luiz Antonio d´Avila
Affiliation:
Program in Chemical and Biochemical Process Engineering, School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-909, Brazil
Luciana S. Spinelli
Affiliation:
Program in Nanotechnology Engineering, COPPE, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-909, Brazil Institute of Macromolecules, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP21941-908, Brazil

Abstract

This work presents the results of the physical characterization of palygorskite and its adsorptive behaviour for three solvatochromic dyes (Nile blue chloride (NBC), methylene blue (MTB) and dithizone (DTZ)). Adsorption isotherms were used to determine the maximum adsorption of the solvatochromic dyes on the palygorskite. The characterization of palygorskite was carried out via mineralogical and chemical analysis with X-ray diffraction, X-ray fluorescence, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, surface-charge measurement (ζ-potential), thermogravimetric analysis, textural analysis and cation-exchange capacity analysis. The material consists of palygorskite and quartz and its chemistry is dominated by SiO2, MgO and Fe2O3. The specific surface area and cation-exchange capacity of the palygorskite are 142 m2 g–1 and 41 cmol(+) kg–1, respectively. The SEM and TEM analyses showed a fibrous structure with fibres 20–100 nm long. The thermogravimetric analysis showed three endothermic events at 57.3°C, 171.8°C and 439.6°C. The adsorption capacities of the palygorskite for NBC (basic pH), MTB (basic pH) and DTZ (neutral pH) were 0.082, 0.013 and 0.102 g g–1, respectively. The adsorptions of NBC and MTB were fitted with the Langmuir isotherm model and the adsorption of DTZ was fitted with the Sips model.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Huaming Yang

References

Al-Futaisi, A., Jamrah, A. & Al-Hanai, R. (2007) Aspects of cationic dye molecule adsorption to palygorskite. Desalination, 214, 327342.CrossRefGoogle Scholar
Antilén, M., Amiama, F., Otaiza, M., Armijo, F., Escudey, M., Pizarro, C. & Arancibia-Miranda, N. (2015) A new methodology to evaluate adsorption capacity on nanomaterials. Journal of Nanoparticle Research, 17, 111.CrossRefGoogle Scholar
Aqrawi, A.A. (1993) Palygorskite in the recent fluvio-lacustrine and deltaic sediments of southern Mesopotamia. Clay Minerals, 28, 153159.CrossRefGoogle Scholar
Arnold, D.E. (2005) Maya blue and palygorskite: a second possible pre-Columbian source. Ancient Mesoamerica, 16, 5162.CrossRefGoogle Scholar
Budag, R., Giusti, L.A., Machado, V.G. & Machado, C. (2006) Quality analysis of automotive fuel using solvatochromic probes. Fuel, 85, 14941497.CrossRefGoogle Scholar
Cai, J., Kimura, S., Wada, M. & Kuga, S. (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules, 10, 8794.CrossRefGoogle ScholarPubMed
Campos, V.M.J.S., Bertolino, L.C. & Alves, O.C. (2017) Mineralogical characterization and beneficiation study of kaolin from Equador (RN) and Junco do Seridó (PB) to increase the brightness index. Cerâmica, 63, 369375.CrossRefGoogle Scholar
Carazo, E., Borrego-Sánchez, A., García-Villén, F., Sánchez-Espejo, R., Viseras, C., Cerezo, P. & Aguzzi, C. (2018) Adsorption and characterization of palygorskite–isoniazid nanohybrids. Applied Clay Science, 160, 180185.CrossRefGoogle Scholar
Chen, H. & Wang, A. (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. Journal of Colloid and Interface Science, 307, 309316.CrossRefGoogle ScholarPubMed
Chen, H., Zhao, Y. & Wang, A. (2007) Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149, 346354.CrossRefGoogle ScholarPubMed
Chen, H., Zhao, J., Zhong, A. & Jin, Y. (2011) Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chemical Engineering Journal, 174, 143150.CrossRefGoogle Scholar
Dali Youcef, L., Belaroui, L.S. & López-Galindo, A. (2019) Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Applied Clay Science, 179, 105145.CrossRefGoogle Scholar
Draidia, S., Ouahabi, M.E., Daoudi, L., Havenith, H.B. & Fagel, N. (2016) Occurrences and genesis of palygorskite/sepiolite and associated minerals in the Barzaman formation, United Arab Emirates. Clay Minerals, 51, 763779.CrossRefGoogle Scholar
Fong, J.K. & Xue, Z.L. (2013) A dye-doped optical sensor for the detection of biodiesel in diesel. Chemical Communications, 49, 90159017.CrossRefGoogle Scholar
Frini-Srasra, N. & Srasra, E. (2009) Adsorption of quinalizarin from non aqueous solution onto acid activated palygorskite. Surface Engineering and Applied Electrochemistry, 45, 306311.CrossRefGoogle Scholar
Galán, E. (1996) Properties and applications of palygorskite–sepiolite clays. Clay Minerals, 31, 443453.CrossRefGoogle Scholar
Galgano, P.D., Loffredo, C., Sato, B.M., Reichardt, C. & El Seoud, O.A. (2012) Introducing education for sustainable development in the undergraduate laboratory: quantitative analysis of bioethanol fuel and its blends with gasoline by using solvatochromic dyes. Chemistry Education Research and Practice, 13, 147153.CrossRefGoogle Scholar
Gettens, R.J. (1962) Maya blue: an unsolved problem in ancient pigments. American Antiquity, 27, 557564.CrossRefGoogle Scholar
Giustetto, R. & Wahyudi, O. (2011) Sorption of red dyes on palygorskite: synthesis and stability of red/purple Mayan nanocomposites. Microporous and Mesoporous Materials, 142, 221235.CrossRefGoogle Scholar
Guggenheim, S. & Krekeler, M.P.S. (2011) The structures and microtextures of the palygorskite–sepiolite group minerals. Pp. 332 in: Developments in Clay Science, Vol. 3: Developments in Palygorskite–Sepiolite Research (Galàn, E. & Singer, A., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Güven, N. (2009) Bentonites – clays for molecular engineering. Elements, 5, 8992.CrossRefGoogle Scholar
Hamdi, N. & Srasra, E. (2012) Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. Journal of Environmental Sciences, 24, 617623.CrossRefGoogle ScholarPubMed
Kleber, R., Masschelein-Kleiner, L. & Thissen, J. (1967) Etude et identification du ‘bleu Maya’. Studies in Conservation, 12, 4156.Google Scholar
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. & Kamigaito, O. (1993) Mechanical properties of nylon 6–clay hybrid. Journal of Materials Research, 8, 11851189.CrossRefGoogle Scholar
Kong, Y., Ge, H., Xiong, J., Zuo, S., Wei, Y., Yao, C. & Deng, L. (2014) Palygorskite polypyrrole nanocomposite: a new platform for electrically tunable drug delivery. Applied Clay Science, 99, 119124.CrossRefGoogle Scholar
Kupfer, V.L., Jaerger, S. & Wypych, F. (2015) Poly(vinyl alcohol) nanocomposites containing hybrid materials mimicking the Maya blue pigment. Polymers – Science and Technology, 25, 7788.Google Scholar
Lahoues-Chakour, N., Barama, S., Barama, A., Djellouli, B., Domingos, C. & Davidson, A. (2018) Catalytic behavior of nickel loaded on acid-activated and pillared clay in total gas-phase oxidation of ethanol. Journal of Nanoparticle Research, 20, 114.CrossRefGoogle Scholar
Lee, J., Chang, H.T., An, H., Ahn, S., Shim, J. & Kim, J.M. (2013) A protective layer approach to solvatochromic sensors. Nature Communications, 4, 2461.CrossRefGoogle ScholarPubMed
Luo, Y., Luo, J., Duan, G. & Liu, X. (2017) Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride. Journal of Nanoparticle Research, 19, 385.CrossRefGoogle Scholar
Machado, V.G., Stock, R.I. & Reichard, C. (2014) Pyridinium N-phenolate betaine dyes. Chemical Reviews, 114, 1042910475.CrossRefGoogle ScholarPubMed
Madejová, J.L., Jankovi, L., Pentrák, M. & Komadel, P. (2011) Benefits of near-infrared spectroscopy for characterization of selected organo-montmorillonites. Vibrational Spectroscopy, 57, 814.Google Scholar
Middea, A., Fernandes, T.L., Neumann, R., Gomes, F.M.O. & Spinelli, L.S. (2013) Evaluation of Fe(III) adsorption onto palygorskite surfaces. Applied Surface Science, 282, 253258.CrossRefGoogle Scholar
Miller, J.G., Haden, W.L. & Oulton, T.D. (1963) Oxidizing power of the surface of attapulgite clay. Clays and Clay Minerals, 12, 381395.CrossRefGoogle Scholar
Orvalez, S., Giulieri, F., Delamare, F.N. & Sbirrazzuoli, A.C. (2011) Indigo–sepiolite nanohybrids: temperature-dependent synthesis of two complexes and comparison with indigo–palygorskite systems. Microporous and Mesoporous Materials, 14, 371380.Google Scholar
Paz, S.P.A.D., Angélica, R.S., Neves, R.F., Neumann, R. & da Costa, G.M. (2011) Occurrence of a new Brazilian bentonite in the weathered basalts of the Mosquito formation, Parnaíba basin, southern Maranhão. Cerâmica, 57, 444452.CrossRefGoogle Scholar
Pham, H. & Nguyen, Q.P. (2014) Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. Journal of Nanoparticle Research, 16, 2137.CrossRefGoogle ScholarPubMed
Romero, E.G., Barrios, M.S. & Revuelta, M.A.B. (2004) Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain). Clays and Clay Minerals, 52, 484494.CrossRefGoogle Scholar
Rossetto, E., Beraldin, R., Penha, F.G. & Pergher, S.B.C. (2009) Characterization of bentonite and diatomite clays and their application as adsorbents. Quimica Nova, 32, 20642067.CrossRefGoogle Scholar
Rusmin, R., Sarkar, B., Biswas, B., Churchman, J., Liu, Y. & Naidu, R. (2016) Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Applied Clay Science, 134, 95102.CrossRefGoogle Scholar
Santos, R.C., Cavalcanti, J.N.C., do Carmo, E.C.W., de Souza, F.C., Soares, W.G., de Souza, C.G. & d'Avila, L.A. (2020) Approaching diesel fuel quality in chemistry lab classes: undergraduate student's achievements on determination of biodiesel content in diesel oil applying solvatochromic effect. Journal of Chemical Education, 97, 44624468.CrossRefGoogle Scholar
Sarkar, S., Guibal, E., Quignard, F. & SenGupta, A.K. (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research, 14, 124.CrossRefGoogle Scholar
Selvakumar, P.M., Nadella, S., Fröhlich, R., Albrecht, M. & Subramanian, P.S. (2012) A new class of solvatochromic material: geometrically unsaturated Ni(II) complexes. Dyes and Pigments, 95, 563571.CrossRefGoogle Scholar
Shah, K.J. & Imae, T. (2016) Analytical investigation of specific adsorption kinetics of CO2 gas on dendrimer loaded in organoclays. Chemical Engineering Journal, 283, 13661373.CrossRefGoogle Scholar
Simões, K.M., Novo, B.L., Felix, A.A., Afonso, J.C., Bertolino, L.C. & Silva, F.A. (2017) Ore dressing and technological characterization of palygorskite from Piauí/Brazil for application as adsorbent of heavy metals. Pp. 261267 in: Characterization of Minerals, Metals, and Materials 2017 (Ikhmayies, S., Li, B., Carpenter, J.S., Li, J., Hwang, J.-Y., Monteiro, S.N et al. , editors). Springer International, New York, NY, USA.CrossRefGoogle Scholar
Suárez, M. & Garcia-Romero, E. (2006) FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Applied Clay Science, 31, 154163.CrossRefGoogle Scholar
Tajalli, H., Gilani, A.G., Zakerhamidi, M.S. & Tajalli, P. (2008) The photophysical properties of Nile red and Nile blue in ordered anisotropic media. Dyes and Pigments, 78, 1524.CrossRefGoogle Scholar
Tomašević, D.D., Kozma, G., Kerkez, D.V., Dalmacija, B.D., Dalmacija, M.B., Bečelić-Tomin, M.R. & Rončević, S. (2014) Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron. Journal of Nanoparticle Research, 16, 115.CrossRefGoogle Scholar
Wang, W. & Wang, A. (2019) Palygorskite nanomaterials: structure, properties, and functional applications. Pp. 21133 in: Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials (Wang, A. & Wang, W., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Wang, Z.M., Nakajima, H., Manias, E. & Chung, T.C. (2003) Exfoliated PP/clay nanocomposites using ammonium-terminated PP as the organic modification for montmorillonite. Macromolecules, 36, 89198922.CrossRefGoogle Scholar
Wang, W., Wang, F., Kang, Y. & Wang, A. (2015) Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite. Water, Air, & Soil Pollution, 226, 113.CrossRefGoogle Scholar
Xavier, K.C., Santos, M.S., Osajima, J.A., Luz, A.B., Fonseca, M.G. & Silva Filho, E.C. (2016) Thermally activated palygorskites as agents to clarify soybean oil. Applied Clay Science, 119, 338347.CrossRefGoogle Scholar
Yan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D. & He, H. (2012) Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60, 561573.CrossRefGoogle Scholar
Yeniyol, M. (2012) Geology and mineralogy of a sepiolite–palygorskite occurrence from SW Eskişehir (Turkey). Clay Minerals, 47, 93104.CrossRefGoogle Scholar
Supplementary material: File

Gimenes de Souza et al. supplementary material

Gimenes de Souza et al. supplementary material

Download Gimenes de Souza et al. supplementary material(File)
File 180 KB