Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T17:04:58.529Z Has data issue: false hasContentIssue false

Biodegradable polymer nanocomposites based on natural nanotubes: effect of magnetically modified halloysite on the behaviour of polycaprolactone

Published online by Cambridge University Press:  02 January 2018

Viera Khunová*
Affiliation:
Institute of Natural and Synthetic Polymers, Slovak University of Technology, FCHPT, Radlinského 9, Bratislava 812 37, Slovakia
Ivo Šafařík
Affiliation:
Department of Nanobiotechnology, Biology Centre, CAS, Na Sádkách 7, České Budejovice 370 05, Czech Republic
Martin Škrátek
Affiliation:
Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 841 04, Slovakia
Ivan Kelnar
Affiliation:
Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Heyrovsky Sq. 2, Prague 16206, Czech Republic
Katarína Tomanová
Affiliation:
Institute of Natural and Synthetic Polymers, Slovak University of Technology, FCHPT, Radlinského 9, Bratislava 812 37, Slovakia
*

Abstract

The present study explores the effect of a magnetically modified halloysite (mHNT) surface on the structure and properties of biodegradable polymer nanocomposites based on poly ɛ-caprolactone (PCL). Halloysite nanotubes (HNTs) have been modified by a scalable and tunable procedure using magnetic Fe oxide particles prepared by microwave-assisted synthesis fromferrous sulfate at high pH. The HNT content in composites prepared in melt varied from 5 to 30 wt.%. Application of magnetically modified HNT to PCL resulted in the formation of soft magnetic materials. Analyses of the nanocomposite structure revealed that both natural and magnetized HNTs, as well as free magnetite particles are dispersed uniformly in the polymer matrix. Investigation of the mechanical and physical properties confirmed that the reinforcing ability of HNTs was not affected by magnetic modification.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cai, N., Dai, Q., Wang, Z., Luo, X., Xue, Y. & Yu, F. (2015) Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nano-tubes. Journal of Materials Science, 50, 14351445.10.1007/s10853-014-8703-4Google Scholar
Carosio, F., Fina, A. & Coisson, M. (2010) Polypropylene-based ferromagnetic composites. Polymer Bulletin, 65, 681689.10.1007/s00289-010-0282-1Google Scholar
Cavallaro, G., Lazzara, G. & Milioto, S. (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polymer Degradation and Stability, 98, 25292536.10.1016/j.polymdegradstab.2013.09.012Google Scholar
Chiew, S.C.C., Poh, P.E., Pasbakhsh, P., Tey, B.T., Yeoh, H.K. & Chan, E.S. (2014) Physicochemical character-ization of halloysite/alginate bionanocomposite hydrogel. Applied Clay Science, 101, 444454.10.1016/j.clay.2014.09.007Google Scholar
Ghebaur, A., Garea, S.A. & Iovu, H. (2012) New polymer-halloysite hybrid materials-potential controlled drug release system. InternationalJournal of Pharmaceutics, 436, 568573.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals — a review. Clay Minerals, 40, 383426.10.1180/0009855054040180Google Scholar
Kalia, S., Kango, S., Kumar, A., Haldorai, Y., Kumari, B. & Kumar, R. (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid and Polymer Science, 292, 20252052.10.1007/s00396-014-3357-yGoogle Scholar
Kruzelak, I., Hudec, I. & Dosoudil, R. (2012) Elastomeric magnetic composites — physical properties and network structure. Polimery, 57, 2532.10.14314/polimery.2012.025CrossRefGoogle Scholar
Kruzelak, I., Sýkora, R., Dosoudil, R. & Hudec, I. (2014) Magnetic composites based on natural rubber prepared by using peroxide and sulphur curing system. Polymer Advanced Technologies, 25, 9951000.10.1002/pat.3341CrossRefGoogle Scholar
Lee, K.-S. & Chang, Y.-W. (2013) Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/ halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 128, 28072816.10.1002/app.38457Google Scholar
Liu, M., Zhang, Y. & Zhou, C.H. (2013a) Nanocomposites of halloysite and polylactide. Applied Clay Science, 75, 5259.10.1016/j.clay.2013.02.019Google Scholar
Liu, M., Wu, Ch., Jiao, Y., Xiong, S. & Zhou, C.H. (2013b) Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. Journal of Materials Chemistry B, 1, 20782089.10.1039/c3tb20084aCrossRefGoogle ScholarPubMed
Liu, M., Jia, Z., Jia, D. & Zhou, C.H. (2014) Recent advance in research on halloysite nanotubes — polymer nanocomposite. Progress in Polymer Science, 39, 14981525.10.1016/j.progpolymsci.2014.04.004CrossRefGoogle Scholar
Lvov, Y., Aerov, A. & Fakhrullin, R. (2014) Clay nanotube encapsulation for functional biocomposites. Advances in Colloid and Interface Science, 207, 189198.10.1016/j.cis.2013.10.006Google Scholar
Murariu, M., Dechie, A., Paint, Y., Peeterbroeck, S., Bonnaud, L. & Dubois, P. (2012) Polylactide (PLA)-halloysite nanocomposites: production, morphology and key-properties. Journal of Polymers & the Environment, 20, 932943.10.1007/s10924-012-0488-4CrossRefGoogle Scholar
Pasbakhsh, P., Churchman, G.J. & Keeling, J.L. (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 4757.10.1016/j.clay.2012.06.014Google Scholar
Safarik, I. & Safarikova, M. (2014) One-step magnetic modification of non-magnetic solid materials. International Journal of Materials Research, 105, 104107.10.3139/146.111009Google Scholar
Safarik, I., Horska, K., Pospiskova, K. & Safarikova, M. (2012) Magnetically responsive activated carbons for bio- and environmental applications. International Review of Chemical Engineering, 4, 346352.Google Scholar
Vergaro, V., Abdullayev, E., Lvov, Y., Zeitoun, A., Cingolani, R., Rinaldi, R. & Leporatti, S. (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 82082.10.1021/bm9014446Google Scholar
Verma, K., Moore, E., Blau, W., Volkov, Y. & Babu, P.R. (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. Journal of Nanoparticle Research, 14, 1137.10.1007/s11051-012-1137-5CrossRefGoogle Scholar
Wang, Q., Zhang, J. & Wang, A. (2013) Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science 287, 5461.10.1016/j.apsusc.2013.09.057Google Scholar