Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:59:27.125Z Has data issue: false hasContentIssue false

The application of electron spin resonance spectroscopy to studies of clay minerals: II. Interlamellar complexes—structure, dynamics and reactions

Published online by Cambridge University Press:  09 July 2018

Peter L. Hall*
Affiliation:
Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham BI5 2TT, England

Abstract

A review is given of the application of ESR spectroscopy to the study of hydrated transition metal ions and nitroxide spin probes in the interlamellar region of smectites and vermiculites. These investigations have not only provided information regarding the structure and mobility of the intracrystalline water-cation layers but have also demonstrated the reactivity and catalytic properties of certain transition metal exchange forms of smectites. Several novel coordination complexes and redox reactions between the exchange ions and a variety of simple organic molecules have been characterized.

Résumé

Résumé

On passe en revue l'application de la spectroscopie RPE à l'étude des ions de métaux de transition hydratés et des sondes paramagnétiques oxynitrées, situés dans l'espace interlamellaire des smectites et des vermiculites. Ces recherches apportent non seulement des informations concernant la structure et la mobilité des couches eau-cations intracristallines, mais également sur la réactivité et les propriétés catalytiques de certaines formes de smectites échangées par des métaux de transition. On a pu caractériser plusieurs complexes nouveaux de coordination ainsi que des réactions redox entre les ions échangeables et des molécules organiques variés.

Kurzreferat

Kurzreferat

Es wurde ein Überblick gegeben über die Anwendung der ESR-Spektroskopie zur Untersuchung von Übergangsmetall-Ionen und Nitroxydspin-Proben im interlamellaren Bereich von Smektiten und Vermiculiten. Diese Untersuchungen brachten nicht nur Kenntnisse bezüglich der Struktur und Mobilität der interkristallinen Wasserkationen-Schichten, sondern haben auch die Reaktivität und katalytischen Eigenschaften bestimmter Austauschformen der Übergangsmetalle von Smektiten gezeigt. Mehrere ungewöhnliche Koordinationskomplexe und Redox-Reaktionen zwischen Austauschionen und einer Vielzahl einfacher organischer Moleküle konnten charakterisiert werden.

Resumen

Resumen

Se facilita una reseña de la aplicación de la espectroscopia de resonancia del espín de los electrones al estudio de los iones de metales de transición hidratados y a las sondas del espín de los nitróxidos en la región interlamelar de esmectitas y vermiculitas. Estas investigaciones no sólo han proporcionado información sobre la estructura y la movilidad de las capas intracristalinas de cationes del agua, sino que han demostrado además la reactividad y las propiedades catalíticas de ciertas formas de intercambio de metales de transición de las esmectitas. Se han caracterizado varios complejos de coordinación y reacciones de reducción-oxidación entre los iones de intercambio y una variedad de moléculas orgánicas sencillas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R. & Hall, P.L. (1973) Electron spin resonance studies of kaolins. Proc. Int. Clay Conf. Madrid, 47-60.Google Scholar
Berkheiser, V.E. & Mortland, M.M. (1975) Variability in exchange ion position in a smectite: DepenDence on interlayer solvent. Clays Clay Miner. 23, 404410.CrossRefGoogle Scholar
Berkheiser, V.E. & Mortland, M.M. (1977) Hectorite complexes with copper (II) and iron (II)-I, 10-phenanthroline chelates. Clays Clay Miner, 25, 105112.CrossRefGoogle Scholar
Burba, J.L. & Mcatee, J.L. (1977) The orientation and interaction of ethylenediamine copper (II) with montmorillonite. Clays Clay Miner. 25, 113118.CrossRefGoogle Scholar
Clementz, D.M., Pinna Vaia, T.J. & Mortland, M.M. (1973) Stereochemistry of hydrated copper (II) ions on interlamellar surfaces of layer silicate: an electron spin resonance study. J. Phys. Chem. 77, 196200.CrossRefGoogle Scholar
Cloos, P, Van De Poel, D & Camerlynck, J (1973) Thiophene complexes on montmorillonite saturated with different cations. Nature Phys. Sci. 243, 5455.CrossRefGoogle Scholar
Fenn, D, Mortland, M.M. & Pinnavaia, T.J. (1973) The chemisorption of anisole on Cu (II) hectorite. Clays Clay Miner. 21, 315322.CrossRefGoogle Scholar
Freed, J.H. & Fraenkel, G.K. (1963) Theory of linewidths in ESR spectra. J. Chem. Phys. 39, 326348.CrossRefGoogle Scholar
Furahata, A & Kuzwata, K (1969) Electron spin resonance spectra of manganese (II) and copper (II) adsorbed on clay minerals and silica-alumina mixtures. Nendo Kagaku 9, 1927.Google Scholar
Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Miner 15, 321335.CrossRefGoogle Scholar
Hall, P.L., Ross, D.K., Tuck, J.J. & Hayes, M.H.B. (1979) Neutron scattering studies of the dynamics of interlamellar water in montmorillonite and vermiculite. Proc. Int. Clay Conf. Oxford, 121-130.Google Scholar
Hougardy, J, Stone, W.E.E. & Fripiat, J.J. (1976) NMR study of adsorbed water. I. Molecular orientation and protonic motions in the two-layer hydrate of Na+ vermiculite. J. Chem. Phys. 64, 38403851.CrossRefGoogle Scholar
Kivelson, D. (1960) Theory of ESR linewidths of free radicals. J. Chem. Phys. 33, 10941106.CrossRefGoogle Scholar
Leoppert, R.H. & Mortland, M.M. & Pinnavaia, T.J. (1979) Synthesis and properties of heat-stable expanDed smectite and vermiculite. Clays Clay Miner. 27, 201208.CrossRefGoogle Scholar
Mcbride, M.B. (1976a) Hydration structure of exchangeable Cu2+ in vermiculite and smectite. Clays Clay Miner. 24, 211212.CrossRefGoogle Scholar
Mcbride, M.B. (1976b) Exchange and hydration properties of Cu2+ on mixed Na+-Cu2 + smectites. Soil Sci. Soc. Am. J. 40, 452456.CrossRefGoogle Scholar
Mcbride, M.B. (1976c) NitroxiDe spin probes on smectite surfaces: temperature and solvation effects on the mobility of exchange cations. J. Phys. Chem. 80, 186203.CrossRefGoogle Scholar
Mcbride, M.B. (1976d) Use of nitroxiDe spin probes in ESR studies of adsorbed molecules on solvated layer silicates. Am. Chem. Soc. Symp. Ser. 34, 123140.Google Scholar
Mcbride, M.B. (1977a) Mobility and orientation of charged molecules at silicate surfaces. Clay Miner. 12, 273277.CrossRefGoogle Scholar
Mcbride, M.B. (1977b) Adsorbed molecules on solvated layer silicates: surface mobility and orientation from ESR studies. Clays Clay Miner. 25, 613.CrossRefGoogle Scholar
Mcbride, M.B. (1979a) Mobility and reactions of V 0 2 + on hydrated smectite surfaces. Clays Clay Miner. 27, 9196.CrossRefGoogle Scholar
Mcbride, M.B. (1979b) Cationic spin probes on hectorite surfaces: Demixing and mobility as a function of adsorption level. Clays Clay Miner. 27, 97104.CrossRefGoogle Scholar
Mcbride, M.B. (1979c) Reactivity of adsorbed and structural iron in hectorite as indicated by the oxidation of benzidine. Clays Clay Miner. 27, 224230.CrossRefGoogle Scholar
Mcbride, M.B. & Mortland, M.M. (1974) Copper (II) interactions with montmorillonite: eviDence from physical methods. Soil Sci. Soc. Am. Proc. 38, 408415.CrossRefGoogle Scholar
Mcbride, M.B. & Mortland, M.M. (1975). Surface properties of mixed Cu (H)-tetraalkyl-ammonium montmorillonites. Clay Miner. 10, 357368.CrossRefGoogle Scholar
Mcbride, M.B., Pinnavaia, T.J. & Mortland, M.M. (1975a). Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces. J. Phys. Chem. 79, 24302435.CrossRefGoogle Scholar
Mcbride, M.B., Pinnavaia, T.J. & Mortland, M.M. (1975b) Electron spin relaxation and the mobility of manganese (II) exchange ions in smectites. Am. Miner. 60, 6672.Google Scholar
Mason, R.P. & Freed, J.H. (1974) Estimating rotational correlation times from lifetime broaDening of nitroxiDe ESR spectra near the rigid limit. J . Phys. Chem. 78, 13211323.CrossRefGoogle Scholar
Mortland, M.M. & Halloran, L (1976) Polymerization of aromatic molecules on smectite. Soil Sci. Soc. Am. J. 40, 367370.CrossRefGoogle Scholar
Mortland, M.M. & Pinnavaia, T.J. (1971) Formation of copper (II) arene complexes on the interlamellar surfaces of montmorillonite. Nature Phys. Sci. 229, 7577.CrossRefGoogle Scholar
Nagai, S (1975) ESR study on radiation-induced radicals in stearic acid and its related compounds adsorbed on interlamellar surfaces of montmorillonite. Chem. Phys. 8, 178184.CrossRefGoogle Scholar
Nagai, S, Onishi, S, Nitta, I, Tsunashima, M, Karaman, F & KOIZUNI, M. (1974) ESR study of Cu (II) ion complexes adsorbed on interlamellar surfaces of montmorillonite. Chem. Phys. Letters 26, 517520.CrossRefGoogle Scholar
Pafamov, N.N., Silchenho, V.A., Tarasevich, Y.I., Telichkun, V.P. & Bratashevskii, Y.A. (1971) State of Cu2+ and Mn2+ exchange cations in montmorillonite saturated by acetonitile and pyridine studied by EPR. Ukr. Khim. Zh. 37, 672.Google Scholar
Pinna Vaia, T.J. (1976) Orientation and mobility of hydrated metal ions in layer lattice silicates. Am. Chem. Soc. Symp. Ser. 34, 94108.Google Scholar
Pinna Vaia, T.J., Hall, P.L., Cady, S.S. & Mortland, M.M. (1974) Aromatic radical cation formation on the intracrystal surface of transition metal layer lattice silicate. J . Phys. Chem. 78, 994999.CrossRefGoogle Scholar
Pinna Vaia, T.J. & Mortland, M.M. (1971) Interlamellar metal complexes on layer silicates. I. Copper (II) complexes on montmorillonite. J. Phys. Chem. 75, 39573962.CrossRefGoogle Scholar
Rupert, J.P. (1973) ESR spectra of interlamellar Cu (Il)-arene complexes on montmorillonite. J . Phys. Chem. 77, 784790.CrossRefGoogle Scholar
Sachs, F & Latorre, J (1974) Cytoplasmic solvent structure of single barnacle muscle cells studied by electron spin resonance. J. Biophys 14, 316326.CrossRefGoogle Scholar
Schoonheydt, R.A., Velghe, F, Baertz, R & Uytterhoeven, J.B. (1979) Complexes of diethylenetriamine (dien) and tetraethylenepentamine (tetren) with Cu (II) and Ni (II) on hectorite. Clays Clay Miner. 27, 269278.CrossRefGoogle Scholar
Stoessel, F, Guth, L.J. & Wey, R (1977) Polymerization of benzene to polyparaphenylene on copper (2 + )-montmorillonite. Clay Miner. 12, 255259.CrossRefGoogle Scholar
Tarasevich, Y.I. & Ovcharenko, F.D. (1973) On the mechanism of interaction between nitrogenous organic substances and montmorillonite surface. Proc. Int. Clay Conf. Madrid, 627-636.Google Scholar
Traynor, M.F., Mortland, M.M. & Pinna Vaia, T.J. (1978) Ion exchange and intersalation reactors of hectorite with tris-bipyridyl metal complexes. Clays Clay Miner. 26, 318326.CrossRefGoogle Scholar
Tricker, M.M., Tennakoon, D.T.B., Thomas, J.M. & Graham, S.H. (1975) Novel reactions of hydrocarbon complexes of metal substituted sheet silicates: thermal dimerization of trans-stilbene. Nature Phys. Sci. 253, 110111 CrossRefGoogle Scholar
Van De Poel, D., Cloos, P, Helsen, J & Janini, E (1973) Comportement particulier du benzene adsorbé sur la montmorillonite cuivrique. Bull. Grpe Fr. Argiles 25, 115126.CrossRefGoogle Scholar
Velghe, F, Schoonheydt, R.A., Uytherhoeven, J.B., Peigneur, P & Lunsford, J.H. (1977) Spectroscopic characterization and thermal stability of copper (II) ethylenediamine complexes on solid surfaces. II. Montmorillonite. J. Phys. Chem. 81, 11871194.CrossRefGoogle Scholar