Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:50:33.072Z Has data issue: false hasContentIssue false

The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties

Published online by Cambridge University Press:  09 July 2018

Peter L. Hall*
Affiliation:
Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT

Abstract

Electron spin resonance (ESR) spectroscopy has contributed significantly to the identification and characterization of paramagnetic impurities associated with clays. Following a brief discussion of the general principles of the technique, a review is given of the application of ESR to the study of those paramagnetic species (chiefly iron and radiation-induced lattice defects) located either within the aluminosilicate structure or present as an external impurity phase.

Résumé

Résumé

La spectroscopie de résonance paramagnétique électronique (RPE) a apporté une contribution significative à l'identification et à la caractérisation des impuretés paramagnétiques associées aux argiles. Après une brève discussion des principes généraux de la technique, on passe en revue l'application de la RPE à l'étude de ces espèces paramagnétiques localisées soit dans la structure de l'aluminosilicate, soit dans une phase étrangère. Il s'agit essentiellement de fer et de défauts de réseau induits par rayonnement.

Kurzreferat

Kurzreferat

Die Elektronenspin-Resonanz-Spektroskopie (ESR) hat zur Bestimmung und Charakterisierung von paramagnetischen Verunreinigungen in Tonen einen bedeutenden Beitrag geliefert. Nach einer kurzen Diskussion der hauptsächlichen Prinzipien dieser Technik, wird ein Überblick gegeben über die Anwendung der ESR-Spektroskopie zur Untersuchung solcher paramagnetischer Spezies (hauptsächlich Eisen und strahlungs-induzierte Gitterdefekte), die entweder innerhalb der Aluminosilikat-Struktur vorliegen oder als externe Verunreinigungs-phasen vorhanden sind.

Resumen

Resumen

La espectroscopia de resonancia del espín de los electrones ha contribuido significantemente a la identificación y caracterización de impurezas paramagnéticas relacionadas con las arcillas. Después de una breve discusión de los principios generales de esta técnica se pasa revista a la aplicación de la misma al estudio de las especies paramagnéticas (principalmente hierro y defectos de la red cristalina inducidos por la radiación) localizados dentro de la estructura de aluminosilicato o presente como fase de impurezas externa.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aasa, R (1970) PowDer line shapes in EPR spectra of high-spin ferric complexes. J. Chem. Phys. 52, 39133930.Google Scholar
Aasa, R & Van ngard, T (1965) ESR single crystal study of Fe3+ with large rhombic crystal field splitting. Arkiv.Kemi 24, 331339.Google Scholar
Abragam, A & Bleaney, B (1970) Electron Paramagnetic Resonance of Transition Ions. Clarendon Press, Oxford.Google Scholar
Angel, B.R. & Hall, P.L. (1973) Electron spin resonance studies of kaolins. Proc. Int. Clay Conf. Madrid, 47-60.Google Scholar
Angel, B.R. & Vincent, W.E.J. (1978) Electron spin resonance studies of iron oxiDes associated with the surface of kaolins. Clays Clay Miner., 26, 263272.CrossRefGoogle Scholar
Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic Kaolinites, I Clay Miner. 10, 247256.Google Scholar
Angel, B.R., Richards, K & Jones, J.P.E. (1976) The synthesis, morphology and general properties of kaolinites specifically doped with metallic ions and Defects generated by irradiation. Proc. Int. Clay Conf. Mexico City, 297-304.Google Scholar
Angel, B.R., Cuttler, A.H., Richards, K & Vincent, W.E.J. (1977) Synthetic kaolinites doped with Fe2+ and Fe3+ ions. Clays Clay Miner. 25, 381383.Google Scholar
Blumberg, W.E. (1967) The EPR of high spin Fe3+ in rhombic fields. Pp. 119-132 in: Magnetic Resonance in Biological Systems (A. Ehrenberg And, T Van ngard, editors). Pergamon, New York.Google Scholar
Boesman, E & Schoemaker, D (1961) Resonance paramagnetique De l'ion Fe3+ dans la kaolinite. Compt. Rend. Acad. Sci. 252, 19311933.Google Scholar
Boucher, L.J., Tynan, E.C. & Yen, T.F. (1969) Spectral properties of oxoVan adium (IV) complexes: IV. Correlation of ESR spectra with ligand type. In: Electron Spin Resonance of Metal Complexes (T.F. Yen, editor). Hilger, London.Google Scholar
Castner, T, Newell, G.S., Holton, W.C. & Slichter, C.P. (1960) Note on the paramagnetic resonance of iron in glass. J. Chem. Phys. 32, 668673.Google Scholar
Che, M, Fraissard, J & Vedrine, J.C. (1974) Applications De la RPE et De la RMN à l'étuDe Des silicates et Des argiles. Bull. Grpe Fr. Argiles 26, 153.Google Scholar
Cuttler, A.H. (1980) The behaviour of a synthetic 57Fe doped kaolin: Mòssbauer and electron paramagnetic resonance studies. Clay Miner. 15, 429443.Google Scholar
Dowsing, R.D. & Gibson, J.F. (1969) Electron spin resonance of high-spin As systems. J . Chem. Phys. 50, 294303.Google Scholar
De Endredy, A.S. (1963) Estimation of free iron oxiDes in soils and clays by a photolytic method. Clay Miner. Bull. 5, 209217.CrossRefGoogle Scholar
Elsass, F & Olivier, D (1978) Infrared and electron spin resonance studies of clays representative of the sedimentary evolution of the Basin of Autun. Clay Miner. 13, 299308.Google Scholar
Friedlander, H.Z., Frink, C.R. & Saldick, J (1963) Electron spin resonance spectra in various clay minerals. Nature 199, 6162.Google Scholar
Giese, R.F. & Datta, P (1973) Hydroxyl orientation in kaolinite, dickite and nacrite. Am. Miner. 58, 471479.Google Scholar
Goodman, B.A. (1978) An investigation by Mossbauer and EPR spectroscopy of the possible presence of iron-rich impurity phases in some montmorillonites. Clay Miner. 13, 351356.Google Scholar
Hall, P.L. (1972) Errors in the Determination of ESR spin concentrations by numerical double integration. J. Phys. D, 5, 673675.Google Scholar
Hall, P.L. (1973) Electron spin resonance studies of aluminosilicate minerals and associated organic substances. PhD thesis, Univ. London.Google Scholar
Hall, P.L., Angel, B.R. & Jones, J.P.E. (1974a) DepenDence of the spin Hamiltonian parameters E and D, on labelling of magnetic axes: application to ESR of high-spin Fe3+. J. Mag. Resonance 15, 6468.Google Scholar
Hall, P.L., Angel, B.R. & Braven, J (1974b) Electron spin resonance and related studies of lignite and ball clay from South Devon, England. Chem. Geol. 13, 97113.CrossRefGoogle Scholar
Herbillon, A.J., Mestdagh, M.M., Vielvoye, L & Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner. 11, 201219.Google Scholar
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin Deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 11, 229235.Google Scholar
Ingram, D.J.E. (1967) Spectroscopy at Radio and Microwave Frequencies. Butterworths, London.CrossRefGoogle Scholar
Ioffe, V.A. & Yanchevskaya, I.S. (1967) Thermoluminescence and electron paramagnetic resonance of irradiated aluminosilicates. Opt. Spectrosc. 23, 494496.Google Scholar
Jones, J.P.E. (1974) Electron spin resonance studies of doped synthetic kaolinites. PhD thesis, Univ. London.Google Scholar
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites II. Clay Miner. 10, 257270.Google Scholar
Kemp, R.C. (1971) Orthorhombic iron centres in muscoviteand phlogopite micas. J. Phys. C, 4, LI 1-L13 and 5, 792 (corrigendum).CrossRefGoogle Scholar
Kemp, R.C. (1972) Electron spin resonance of Fe3+ in phlogopite. J. Phys. C, 5, 35663572.Google Scholar
Kemp, R.C. (1973) Electron spin resonance of iron (3+ ) in muscovite. Phys. Stat. Sol. B57, K79-K81.Google Scholar
Kneubuhl, F.K. (1960) Lineshapes of electron paramagnetic resonance signals produced by powDers, glasses and viscous liquids. J . Chem. Phys. 33, 10741078.Google Scholar
Loveridge, D & Parke, S (1971) Electron spin resonance of Fe3+ , Mn2+ and Cr3+ in glasses. Phys. Chem. Glasses 12, 1927.Google Scholar
Lunsford, J (1965) Polycrystalline EPR spectrum of Fe3+ ions in MgO. J. Chem. Phys. 42, 26172618.Google Scholar
Malden, P.J. & Meads, R.E. (1967) Substitution by iron in kaolinite. Nature 215, 844846.CrossRefGoogle Scholar
Marfunin, A.S., & Bershov, L.V. (1970) The true structure and electron-hole centres of minerals. Sovrem. Kristall. Miner. 186-206.Google Scholar
Maty Ash, I.V., Polshin, E.V. & Kalinchenko, A.M. (1969) Investigation of the effect of thermal treatment on hydromica by radiospectroscopy. Geokhimiya 7, 840845.Google Scholar
Mcbride, M.B., Pinna Vaia, T.J. & Mortland, M.M. (1975a) Perturbation of structural Fe3+ in smectites by exchange ions. Clays Clay Miner. 23, 103108.Google Scholar
Mcbride, M.B., Mortland, M.M. & Pinnavaia, T.J. (1975b) Exchange ion positions in smectite: effect on electron spin resonance of structural iron. Clays Clay Miner. 23, 162164.Google Scholar
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10, 313345.Google Scholar
Mestdagh, M.M.. Vielvoye, L & Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner. 15, 113.Google Scholar
Noble, F.R. (1971) A study of disorDer in kaolinite. Clay Miner. 9, 7181.Google Scholar
Novozhilov, A.I., Samilovich, M.I., Ankin, I.M. & Sergeev-Bobr, A.A. (1970) Paramagnetic V, Fe, Mn impurities in crystals of fluorophlogopite, a synthetic mica. Izv. Akad. Nauk. SSSR. (Neorg. Mater), 6, 108112.Google Scholar
O'Brien, M.C.M. & Pryce, M.H.L. (1955) Paramagnetic resonance in irradiated diamond and quartz: an interpretation. Pp. 88-91 in: Report ofConf. on Defects in Cryst. Solids, Bristol. Physical Soc, London.Google Scholar
Olivier, D, Vedrine, J.C. & Pezerat, H (1975) Application De la RPE à la localization du Fe3+ dans les smectites. Bull. Grpe Fr. Argiles 27, 153165.CrossRefGoogle Scholar
Olivier, D, Vedrine, J.C. & Pezerat, H (1976a) Resonance paramagnétique elèctronique du Fe3+ dans les argiles altères artificiellement et dans le milieu naturel. Proc. Int. Clay Conf. Mexico City, 231-238.Google Scholar
Olivier, D, Lauginie, P & Fripiat, J.J. (1976b) Relationship between the longitudinal relaxation rates of water protons and of well Defined paramagnetic centres at low temperature in hydrated vermiculite. Chem. Phys. Letters, 40, 131133.Google Scholar
Olivier, D, Vedrine, J.C. & Pezerat, H (1977) Application De la RPE à la localization Des substitutions isomorphique dans les micas: Fe3+ dans la muscovite et la phlogopite. J. Solid State Chem. 20, 267269.CrossRefGoogle Scholar
Peterson, G.E., Kurkjian, C.R. & Carnevale, A (1974) Random structure moDels and spin resonance in glass. Phys. Chem. Glasses 15, 5258.Google Scholar
Rex, R.W. (1960) Electron paramagnetic resonance studies of stable free radicals in lignins and humic acids. Nature 188, 11851186.Google Scholar
Searl, J.W., Smith, R.C. & Wyard, S.J. (1961) Electron spin resonance absorption for polycrystalline substances. Proc. Phys. Soc. 78, 11741176.Google Scholar
Swartz, JC, Hoffman, B.M., Krizet, R.J. & Atmatzidis, D.K. (1979) A general procedure for simulating EPR spectra of partially oriented paramagnetic centres. J. Mag. Resonance 36, 259268.Google Scholar
Vincent, W.E.J. & Angel, B.R. (1980) Electron spin resonance studies of Van adium impurities in kaolinite. Clays Clay. Miner., 28, (in press).Google Scholar
Wauchope, R.D. & Haque, R (1971) ESR in clay minerals. Nature Phys. Sci. 233, 141.Google Scholar
Wickman, H.H., Klein, M.P. & Shirley, D.A. (1965) Paramagnetic resonance of Fe3+ in polycrystalline Ferrichrome, A J. Chem. Phys. 42, 21132117.Google Scholar