Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T19:50:05.945Z Has data issue: false hasContentIssue false

An iron-free volkonskoite

Published online by Cambridge University Press:  09 July 2018

H. N. Khoury
Affiliation:
Department of Geology and Mineralogy, University of Jordan, Amman, Jordan
R. C. Mackenzie
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ, UK
J. D. Russell
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ, UK
J. M. Tait
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ, UK

Abstract

A green smectitic mineral from Jordan with 16% Cr2O3 (almost 22% on an ignited basis) has been shown by chemical, X-ray, electronoptical, electron microprobe, infrared and thermoanalytical evidence to be an iron-free volkonskoite of composition:

1·06 M+(Si7·39Al0·61)(Cr2·20Mg2·52)O20(OH)4.

The octahedral occupancy of 4·7, with only Mg2+ and Cr3+ in octahedral positions (in a ratio of 1·14), suggests that the mineral is intermediate between di- and trioctahedral—an inference supported by the uniformity of composition of individual particles (as revealed by the microprobe) and IR evidence, which indicates that it is predominantly dioctahedral but with certain trioctahedral characteristics. A volkonskoite sample from the type area in the USSR, examined for comparison, contained 23·5% Cr2O3 (about 29% on an ignited basis), but proved on electron microprobe examination to be a mixture of at least three species, one of which was aluminium-rich. IR and thermoanalytical characteristics are discussed in relation to the existence of tri-dioctahedral species.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andritzky, G. (1963) Ein Vorkommen von Wolchonskoit in einer verquarzten tektonischer Brekzie bei Kürn. Geol. Blätter Nordost-Bayern 13, 186191.Google Scholar
Berthier, P. (1833) Analyse de divers minéraux metalliques. Annls Mines 3, 3969.Google Scholar
Berzelius, J. (1835) Jahresbericht über die Fortschritte der physischen Wissenschaften von J. Berzelius. 14, p. 196. H. Laupp, Tübingen. Google Scholar
Chukhrov, F.V. (1955) Kolloidy v Zemnoi Kore [Colloids in the Earth’s Crust], pp. 561563. Izd. Akad. Nauk SSSR, Moscow.Google Scholar
Dimitrov, S. (1942) Khromovi glini i nikelov asbolan v Nevrokopsko [Chromiferous clay and nickel-absolane from Nevrokop]. God. Sof. Univ. II. Fak. Phys.-Mat., Livre 3, Sci. Nat. 38 (2), 207226.Google Scholar
Entsov, G.I., Ignatev, N.A. & Starkov, N.P. (1952) K geologo-petrograficheskoi kharakteristike volkonskoitovykh mestorozhdenii Prikamya [Geological and petrological characteristics of volkonskoite deposits of the Kama River area]. Zap. vsesoyuz. Miner. Obshch. 81, 179184.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.CrossRefGoogle Scholar
Grim, R.E. & Rowland, R.A. (1942) Differential thermal analyses of clay minerals and other hydrous materials. Am. Miner. 27, 746761. 801-818.Google Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Bull. Geol. Surv. Isr. 70, 180.Google Scholar
Hashimoto, I. & Jackson, M.L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner. 7, 102113.CrossRefGoogle Scholar
Heimbach, W. (1965) Zum Vorkommen von Chromatit, CaCrO4, in Jordanien. Geol. Jb. 83, 717724.Google Scholar
Heimbach, W. & Rösch, H. (1980) Die Mottled Zone in Zentraljordanien, Geol. Jb. B40, 317.Google Scholar
Holdridge, D.A. & Walker, E.G. (1968) DTA curves of some Israeli clays and associated materials. Trans. Br. Ceram. Soc. 67, 243269.Google Scholar
Ivanova, V.P. (1961) Termogrammy mineralov [Thermal curves of minerals]. Zap. vsesoyuz. Miner. Obschch. 90, 5090.Google Scholar
Jeffery, P.D. (1970) Chemical Methods of Rock Analysis, pp. 194197. Pergamon, Oxford.Google Scholar
Kämmerer, A. (1831) Auszuge aus Briefen: Mittheilungen an dem Geheimen Rath von Leonhard gerichtet. Jb. Miner. Geogn. Geol. Petr. 2, 420.Google Scholar
Kersten, C. (1839) Chemische Untersuchung des Wolchonskoits. Annln Phys. Chem. 47, 489493.CrossRefGoogle Scholar
Khoury, H.N. & Nassir, S. (1983) A discussion on the origin of Daba marble. Dirasat (in press).Google Scholar
Kostov, I. (1968) Mineralogy, p. 373. Oliver and Boyd, Edinburgh.Google Scholar
McConnell, D. (1954) An American occurrence of volkonskoite. Clays Clay Miner. 2, 152157.CrossRefGoogle Scholar
Mackenzie, R.C. (1951) A micro method for determination of cation-exchange capacity of clay. J. Colloid Sci. 6, 219222.Google Scholar
Mackenzie, R.C. (1964) Hydratationseigenschaften von Montmorillonit. Ber. dt. keram. Ges. 41, 696708.Google Scholar
Mackenzie, R.C. & Berggren, G. (1970) Oxides and hydroxides of higher-valency elements. Pp. 271302 in: Differential Thermal Analysis 1 (Mackenzie, R.C., editor.) Academic Press, London.Google Scholar
Maksimovic, Z. & White, J.L. (1973) Infrared study of chromium-bearing halloysites. Proc. Int. Clay Conf. Madrid 1972,6173.Google Scholar
Mitchell, B.D., Smith, B.F.L.& de Endredy, A.S. (1971) The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays. Isr. J. Chem. 9, 4552.CrossRefGoogle Scholar
Moenke, H. (1966) Mineralspektren II, Spectrum 6.209. Akademie-Verlag, Berlin.Google Scholar
Nassir, S. & Khoury, H.N. (1982) Geology, mineralogy and petrology of Daba marble, Jordan. Dirasat 9, 107130.Google Scholar
Nemecz, E. (1981) Clay Minerals, pp. 167, 173. Akademiai Kiado, Budapest.Google Scholar
Nilssen, B. & Raade, G. (1973) Chromian montmorillonite (volkonskoite) in Norway. Norsk Geol. Tidsskr. 58, 329331.Google Scholar
Norrish, K. & Hutton, J.T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 13, 431453.CrossRefGoogle Scholar
Ross, C.S. (1960) Review of the relationships in the montmorillonite group of clay minerals. Clays Clay Miner. 5, 225229.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillonite group: their origin and relation to soils and clays. Prof. Pap. US Geol. Surv. 205-B, 2379.Google Scholar
Russell, J.D. & Clark, D.R. (1978) The effect of Fe-for-Si substitution on the b-dimension of nontronite. Clay Miner. 13, 133137.CrossRefGoogle Scholar
Serdyuchenko, D.P. (1933) Khromovye nontronity i ikh geneticheskie otnosheniya k zmeevikam na severnom Kavkaze [Chromian nontronites and their genetic relationship to the serpentinite of the northern Caucasus]. Zap. vsesoyuz. Miner. Obshch. 62, 376391.Google Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures, p. 148. Elsevier, Amsterdam.Google Scholar
Webb, T.L. & Krüger, J.E. (1970) Carbonates. Pp. 303341 in: Differential Thermal Analysis 1 (Mackenzie, R.C., editor.) Academic Press, London.Google Scholar
Weiss, A., Koch, G. & Hofmann, U. (1954) Zur Kenntnis von Wolchonskoit. Ber. dt. keram. Ges. 31, 301305.Google Scholar
Wilson, M.J., Russell, J.D. & Tait, J.M. (1974) A new interpretation of the structure of disordered α-cristobalite. Contrib. Miner. Petrol. 47, 16.CrossRefGoogle Scholar