Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T05:46:15.208Z Has data issue: false hasContentIssue false

An extended revision of the interlayer structures of one- and two- layer hydrates of Na- vermiculite

Published online by Cambridge University Press:  09 July 2018

J. Beyer*
Affiliation:
Institute of Soil Science, University of Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
H. Graf Von Reichenbach
Affiliation:
Institute of Soil Science, University of Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
*

Abstract

The interlayer structures in one- and two-layer hydrates of Na-vermiculite are described by presenting the positional parameters of their constituent atoms, including protons.

The revision of these structures has been accomplished by: (1) determining accurate water contents of the two hydrates by thermoanalysis (TG, DSC); (2) using earlier X-ray diffraction data published by Slade et al.(1985) and de la Calle et al. (1984) as a reference; and (3) applying least-squares refinements when considering the constraints for atomic distances and bond angles between interlayer constituents.

In the 1.485 nm hydrate of Na-vermiculite (nH2O/nNa ≈ 4), sharing edges of Na(OH2)6 octahedra cause their chainlike arrangement. The chains are aligned along [100] and are stabilized by H-bonds between interlayer water molecules and oxygens of the silicate layer. The partial loss of these bonds during dehydration forces the stacking order to change from V3 to Vc in the resulting 1.185 nm (nH2O/nNa ≈ 2) hydrate.

This new understanding may help to explain differences in the rotational correlation time of water molecules between one- and two-layer hydrates of vermiculite as observed by quasielastic neutron scattering (Swenson et al., 2000).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arun, N., Jeevanandam, P., Vasudevan, S. & Ramanathan, K.V. (1999) Motion of interlamellar hydrated sodium ions in layered Cd0.75PS3Na0.5(H2O)2 . Journal of Chemical Physics, 111, 12311239.CrossRefGoogle Scholar
Baur, W.H. (1972) Prediction of hydrogen bonds and hydrogen atom positions in crystalline solids. Acta Crystallographica B, 28, 14561465.CrossRefGoogle Scholar
Baur, W.H. (1992) On H_H distances and the van der Waals radius of hydrogen in inorganic and organic compounds. Acta Crystal logr aphic a B, 48, 745746.Google Scholar
Beyer, J. & Graf von Reichenbach, H. (1998) Dehydration and rehydration of vermiculites: IV. Arrangements of interlayer components in the 1.43 nm and 1.38 nm hydrates of Mg-vermiculite. Zeitschrift für Physikalische Chemie, 207, 6782.CrossRefGoogle Scholar
Bondi, A. (1964) Van der Waals volumes and radii. Journal of Physical Chemistry, 68, 441451.CrossRefGoogle Scholar
Bos-Alberink, A.J.A., Haange, R.J. & Wiegers, G.A. (1979) Structure, chemical reactions and the hydration- dehydration process of the hydrated sodium intercalates Na0.6(D2O)2VS2 and Na0.6(D2O)2VSe2 . Journal of Less-Common Metals, 63, 6980.CrossRefGoogle Scholar
Chiari, G. & Ferraris, G. (1982) The water molecule in crystalline hydrates studied by neutron diffraction. Acta Crystallographica B, 38, 23312341.CrossRefGoogle Scholar
de la Calle, C & Suquet, H. (1988) Vermiculites. Pp. 455496 in. Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Revi ews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
de la Calle, C., Pezerat, H. & Gasperin, M. (1977) Problèmes d’ordre-désordre dans les vermiculites. Structure du minéral calcique hydraté à deux couches. Journal de Physique, Colloque C7, sup. 12, 38, 128133.Google Scholar
de la Calle, C., Plançon, A., Pons, C.H., Dubernat, J., Suquet, H. & Pezerat, H. (1984) Mode d’empilement des feuillets dans la vermiculite sodique hydratée à une couche (Phase à 11–85 Å). Clay Minerals, 19, 563578.CrossRefGoogle Scholar
de la Calle, C., Suquet, H. & Pezerat, H. (1985) Vermicul ites hydratées à une couche. Clay Minerals, 20, 221230.CrossRefGoogle Scholar
Graf von Reichenbach, H. & Beyer, J. (1994 ) Dehydration and rehydration of vermiculites: I. Phlogopitic Mg-vermiculite. Clay Minerals, 29, 327340.CrossRefGoogle Scholar
Graf von Reichenbach, H. & Beyer, J. (1997) Dehydration and rehydration of vermiculites: III. Phlogopitic Sr- and Ba-vermiculite. Clay Minerals, 32, 573586.CrossRefGoogle Scholar
Gutowsky, H.S. & Pake, G.E. (1950) Structural investigations by means of nuclear magnetism. II. Hindered rotation in solids. Journal of Chemical Physics, 18, 162170.CrossRefGoogle Scholar
Hougardy, J., Stone, W.E.E. & Fripiat, J.J. (1976) NMR study of adsorbed water. I. Molecular orientation and protonic motions in the two-layer hydrate of Navermiculite. Journal of Chemical Physics, 64, 38403851.CrossRefGoogle Scholar
Hougardy, J. , Stone, W.E.E. & Fripiat, J.J. (1977) Complex proton NMR spectra in some ordered hydrates of vermiculites. Journal of Magnetic Resonance, 25, 563567.Google Scholar
Röder, U., Müller-Warmuth, W. & Schöllhorn, R. (1979) Anisotropic mobility of water in hydrated layerd chalcogenides A x + (H2O) y [TaS2] x– and A x + (H2O) y [NbS2] x as studied by NMR. Journal of Chemical Physics, 70, 28642870.CrossRefGoogle Scholar
Röder, U., Müller-Warmuth, W. & Schöllhorn, R. (1981) 1H and 7Li NMR studies on the dynamics of water and cations in quasi-two-dimensional electrolyte layers of hydrated chalcogenide s. Journal of Chemical Physics, 75, 412417.CrossRefGoogle Scholar
Sheldrick, G.M. (1993) Program SHELXL-93, University of Göttingen, Germany.Google Scholar
Shirozu, J. & Bailey, S.W. (1966) Crystal structure of a two layer Mg-vermiculite. American Mineralogist, 52, 11241143.Google Scholar
Skipper, N.T., Soper, A.K. & McConnell, J.D.C. (1991) The structure of interlayer water in vermiculite. Journal of Chemical Physics, 94, 57515760.CrossRefGoogle Scholar
Skipper, N.T., Williams, G.D., de Siqueira, A.V.C. Lobban, C., Soper, A.K., Done, R., Dreyer, J. & Humphries, J.D.C. (1998) Clays-fluid interactions under sedimentary basin conditions. ISIS Facility Annual Report, 4648.Google Scholar
Slade, P.G., Stone, P.A. & Radoslovich, E.W. (1985) Interlayer structures of the two-layer hydrates of Naand Ca-vermiculites. Clays and Clay Minerals, 33, 5161.CrossRefGoogle Scholar
Steiner, T. & Saenger, W. (1991) H…H van der Waals distance in cooperative O–H…O–H≈O hydrogen bonds determined from neutron diffraction data. Acta Crystallographica B 47, 10221023.CrossRefGoogle Scholar
Steiner, T. & Saenger, W. (1992) H…H van der Waals distance in cooperative O–H≈O–H…O hydrogen bonds determined from neutron diffraction data. Addendum. Acta Crystallographica B, 48, 551552.CrossRefGoogle Scholar
Steiner, T. (1998) Opening and narrowing of the water H–O–H angle by hydrogen-bonding effects: Reinspecti on of neutron diffract ion data. Acta Crystallographica B, 54, 464470.CrossRefGoogle Scholar
Swenson, J., Bergman, R. & Howells, W.S. (2000) Quasielastic neutron scattering of two-dimensional water in a vermiculite clay. Journal of Chemical Physics, 113, 28732879.CrossRefGoogle Scholar