Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:00:55.208Z Has data issue: false hasContentIssue false

An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite

Published online by Cambridge University Press:  09 July 2018

M. Jaboyedoff
Affiliation:
Institut de Minéralogie et Pétrographie Université de Lausanne, BFSH2, 1015 Lausannne, Switzerland Institut de Géologie, Université de Neuchâtel, Rue Emile-Argand, 11, 2007 Neuchâtel, Switzerland
B. Kübler
Affiliation:
Institut de Géologie, Université de Neuchâtel, Rue Emile-Argand, 11, 2007 Neuchâtel, Switzerland
Ph. Thélin
Affiliation:
Institut de Minéralogie et Pétrographie Université de Lausanne, BFSH2, 1015 Lausannne, Switzerland

Abstract

The Scherrer equation links the measured width of an X-ray diffraction peak (Scherrer width, SW) to the number of stacked cells (N) in the direction normal to the diffracting planes. The formula is only valid for one d-value occurring in the coherently diffracting domain. This equation can be modified for weakly swelling mixed-layer minerals. This assumes that the peak broadening caused by the mixed-layering is proportional to the amount of swelling component (S) and that the effects of size and mixed-layering are additive.

If two SW can be measured on XRD patterns from samples treated in two different ways (such as air dried or glycolated), N and S can be determined. This equation is applicable to illite-smectite mixed-layer minerals with high illitic content. The results are most accurate for N>30. The use of Scherrer's equation is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkai, P., Balogh, K. & Frey, M. (1997) The effects of tectonic strain on crystallinity, apparent mean crystallite size and lattice strain of phyllosilicates in low-temperature metamorphic rocks. A case study from the Glarus overthrust, Switzerland. Schweiz. Mineral. Petrogr. Mitt. 77, 2740.Google Scholar
Arkai, P., Merriman, R.J., Roberts, B., Peacor, D.R. & Toth, M. (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites. Eur. J. Mineral. 8, 11191137.Google Scholar
Balasingh, C., Abuhasan, A., & Predecki, P.K. (1991) Diffraction peak broadening studies in A12O3 (wishker) composites. Powder Diffr. 6, 1619.Google Scholar
Delhez, R., de Keijser, T.H. & Mittemeijer EJ. (1982) Determination of crystallite and lattice distortions through X-ray line profile analysis. Recipes, methods and comments. Fresenius Z. Anal. Chem. 312, 1 — 16.Google Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures. Springer Verlag, Berlin.Google Scholar
Drits, V.A., Eberl, D.D. & Środoń, J. J. (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: reappraisal of the Kiibler Index and the Scherrer Equation. Clays Clay Miner. 45, 461475.Google Scholar
Drits, V.A., Eberl, D.D. & Środoń, J. J. (1998) XRD measurement of mean thickeness, thickness distribution and strain for illite and illite-smectite crystallites by Bertaut-Warren-Averbach technique. Clays Clay Miner. 46, 3850.Google Scholar
Eberl, D.D., & Blum, A. (1993) Illite crystallite thickness by X-ray diffraction. Pp. 124—153 in: Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals (Reynolds, R.C. & Walker, J.R., editors). Clay Minerals Society, Special Publication 5, Bloomington, Indiana.Google Scholar
Eberl, D.D. & Velde, B. (1989) Beyond the Kiibler index. Clay Miner. 24, 571577.Google Scholar
Eberl, D.D., Drits, V.A. & Środoń, J. J. (1997) Measurement of illite crystallite thickness by XRD method of Bertaut-Warren-Averbach. Pp. 27—28 in: Journee Scientifiques en l'honneur de Drits, V.A., Groupe Franqaise Argiles. Paris.Google Scholar
Eberl, D.D., Nuesch, R., Šucha, V. & Tsipurski, S. (1998) Measurement of fundamental illite particle thicknesses by XRD using PVP-10 intercalation method of Bertaut-Warren-Averbach. Clays Clay Miner. 46, 8997.Google Scholar
Ergun, S. (1968) Direct method for unfolding convolution products — its application to X-ray scattering intensities. J. Appl. Cryst. 1, 1923.Google Scholar
Frey, M. (1987) Low Temperature Metamorphism. Chapman & Hall, London.Google Scholar
Frey, M. (1988) Discontinuous inverse metamorphic zonation, Glarus Alps, Switzerland: evidence from illite “crystallinity” data. Schweitz. Mineral. Perogr. Mitt. 68, 171183.Google Scholar
Goy-Eggenberger, D. & Kiibler, B. (1990) Résultats préliminaires d'un essai de zonéographie métamorphique à travers les formations calcaires de la Nappe de Morcles. Schweiz. Mineral. Petrogr. Mitt. 70, 8388.Google Scholar
Hendricks, S.B. & Teller, E. (1941) X-ray interference in partially ordered layer lattices. J. Phys. Chem. 10, 147167.Google Scholar
Jaboyedoff, M. (1999) Transformations des interstratifies illite/smectite vers l'illite et la phengite: un exemple dans la série carbonatée du domaine Briançonnais des Alpes suisses romandes. PhD thesis, Univ. Lausanne, Switzerland.Google Scholar
Jaboyedoff, M. & Thélin, P. (1996) New data on low metamorphism in the Briançonnais domain of Prealps, Western Switzerland. Eur. J. Mineral. 8, 577592.Google Scholar
Jaboyedoff, M., Kübler, B. & Thélin, P. (in prep.) Illite crystallinity revisited. Clays Clay Miner. Google Scholar
Jagodzinski, H. (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus des Röntgenintensitaten. Ada Crystallogr. 2, 201207.Google Scholar
Klug, H.P. & Alexander, L.E. (1974) X-ray Diffraction Procedures. J. Wiley & Sons, New York.Google Scholar
Kodama, H., Gatineau, L. & Mering, J. (1971) An analysis of X-ray diffraction line profiles of microcrystalline muscovites. Clays Clay Miner. 19, 405413.Google Scholar
Krumm, S. (1992) Methodishe Untersuchungen, regionale Anwendungen und Verlgleiche mit anderen Parametern. Erlanger geol. Abh. 120, 175.Google Scholar
Kübler, B. (1964) Les argiles, indicateurs de metamorphisme. Rev. Inst. Franq. Petrol. XIX, 1093-1112.Google Scholar
Kübler, B. (1967) La cristallinité de l'illite et les zones tout à fait supérieures du métamorphisme. Pp. 105 — 121 in: Etages tectoniques, Colloque de Neuchâtel 1966. (de la Baconnière, editor). Neuchatel, Switzerland.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphisme par cristallinite de l'illite. Bull. Centre Rech. Pau SNPA 2, 385397.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimétrie. Pp. 489—596 in: Thermométrie et barométrie géologiques (Lagache, M., editor). Soc. Franc. Miner. Crist., Paris.Google Scholar
Kübler, B. (1990) “Cristallinite” de l'illite et mixedlayer: breve revision. Schweiz. Mineral. Petrogr. Mitt. 70, 8993.Google Scholar
Langford, J.I. & Wilson, J.C. (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102113.CrossRefGoogle Scholar
Lanson, B. (1990) Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cows de la diagenèse. PhD thesis, Univ. Paris 6, France.Google Scholar
Lanson, B. & Champion, D. (1991) The I/S-to-illite reaction in the late stage diagenesis. Am. J. Sci. 291, 473506.Google Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns: a convenient way to describe complex I/S diagenetic evolution. Clays Clay Miner. 40, 629643.Google Scholar
Mering, J. (1949) L'interference des rayons X dans les systemes a interstratification desordonnee. Ada Cryst. 2, 371377.Google Scholar
Merriman, R.J., Roberts, B. & Peacor, D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in mudstone to slate transitional sequence, North Wales, UK. Contrib. Mineral. Petrol. 106, 2740.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edition. Oxford University Press, Oxford and New York.Google Scholar
Nieto, F. & Sanchez-Navas, A. (1994) A comparative XRD and TEM study of the physical meaning of the white mica “crystallinity” index. Eur. J. Mineral. 6, 611621.Google Scholar
Pevear, D.R. & Schuette, S.F. (1993) Inverting the Newmod X-ray diffraction forward model for clay minerals using genetic algorithms. Pp. 123—153 in: Computer Application to X-ray Powder Diffraction Analysis of Clay Minerals (Reynolds, R.C. & Walker, J.R., editors) Clay Minerals Society, Special Publication 5, Bloomington, Indiana.Google Scholar
Reynolds, R.C. (1968).The effect of particle size on apparent lattice spacings. Ada Cryst. A24, 319320. Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249—303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph N°5. Mineralogical Society, London.Google Scholar
Reynolds, R.C. (1985) NEWMOD a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Published by the author, 8 Brook Dr., Hanover, New Hampshire, USA.Google Scholar
Reynolds, R.C. (1989) Diffraction by small and disordered crystals. Pp. 145 — 182 in: Modern Powder Diffraction (Bisch, D.L. & Post, J.E., editors). Reviews in Mineralogy 20. Mineralogical Society of America, Washington D.C.Google Scholar
Reynolds, R.C. & Reynolds, R.C. (1996) NEWMOD for Windows a computer program for the calculation of one-dimensional diffraction patterns of mixedlayered clays. Published by the author, 8 Brook Dr., Hanover, New Hampshire, USA.Google Scholar
Roberts, B. & Merriman RJ. (1985) The distinction between Caledonian burial and regional metamorphism in metapelites from North Wales: an analysis of isocryst patterns. J. Geol. Soc. 142, 615624.Google Scholar
Sassi, R., Arkai, P., Lantai, C. & Venturini, C. (1995) Location of boundary between the metamorphic Southalpine basement and the Paleozoic sequences of the Carnic Alps: illite “crystallinity” and vitrinite reflectance data. Schweiz. Mineral. Petrogr. Mitt. 75, 399412.Google Scholar
Scherrer, P. (1918) Bestimmung der grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen, 26, 98100.Google Scholar
Środoń, J. I & Eberl, D.D. (1984) Illite. Pp. 495-544 in: Micas. (Bailey, S.W., editor) Reviews in Mineralogy, 13. Mineralogical Society of America, Washington D.C.Google Scholar
Stern, W.B., Mullis, J. & Frey, M. (1991) Deconvolution of the first “illite” basal reflection. Schweiz. Mineral. Petrogr. Mitt. 71, 453462.Google Scholar
Stokes, A.R. (1948) A numerical Fourier-analysis method for correction of widths and shapes of lines on X-rays powder photographs. Proc. Phys. Soc. London, 61, 382391.Google Scholar
Wang, H., Stern, W.B. & Frey, M. (1995) Deconvolution of the X-ray “Illite” 10 A complex: a case study of Helvetic sediments from eastern Switzerland. Schweiz. Mineral. Petrogr. Mitt. 75, 187199.Google Scholar
Warr, L.N. (1996) Standardized clay mineral crystallinity data from the very low-grade metamorphic facies rocks of southern New Zealand. Eur. J. Mineral. 8, 115127.Google Scholar
Warr, L.N., & Rice, H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J. metam. Geol., 12, 141152.Google Scholar
Warren, B.E. & Averbach, B.L. (1950) The effect of cold work distortion on X-ray patterns. J. Appl. Phys. 21, 595599.Google Scholar
Watanabe, T. (1988) The structural model of illite/ smectite interstratified minerals and the diagram for its identification. Clay Sci. 7, 97114.Google Scholar
Weaver, C.E. (1960) Possible uses of clay minerals in the search for oil. Bull. Am. Assoc. Petrol. Geol. 44, 15051518.Google Scholar
Wilson, A.J. (1962) On the variance as a measure of line broadening in diffractometry general theory and small particle size. Proc. Phys. Soc. London, 80, 286294.Google Scholar