Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:31:16.343Z Has data issue: false hasContentIssue false

An approach to the chemistry of pyroxenes formed during the firing of Ca-rich silicate ceramics

Published online by Cambridge University Press:  09 July 2018

M. Dondi
Affiliation:
CNR-IRTEC, via Granarolo 64, 48018 Faenza, Italy
G. Ercolani
Affiliation:
CNR-IRTEC, via Granarolo 64, 48018 Faenza, Italy
B. Fabbri
Affiliation:
CNR-IRTEC, via Granarolo 64, 48018 Faenza, Italy
M. Marsigli
Affiliation:
CNR-IRTEC, via Granarolo 64, 48018 Faenza, Italy

Abstract

Carbonate-bearing ceramic bodies are frequently used in the manufacture of bricks, roofing tiles, wall and floor tiles, pottery and tableware. During the firing of these bodies, clinopyroxene is usually formed in very small crystals, 1-5 µm in diameter or less. In the literature this phase is generally referred to as diopside, but no quantitative data are available. In order to chemically characterize these ‘ceramic’ pyroxenes, nine industrial products were analysed by XRF and XRD (bulk sample) and SEM-EDS (fracture surface). Quantitative ZAF analyses of pyroxene crystals showed a certain chemical variability: SiO2 35-50%, Al2O3 9-20%, Fe2O3 1-15%, MgO 3-14%, and CaO 16-25%. Sodium, K and Ti are always <1%, while ferrous iron is always <0.2% in the bulk sample. Overall, ‘ceramic’ clinopyroxenes present wide chemical analogies with ‘fassaite’, e.g. the abundance of aluminium and ferric iron, and the excess ofwollastonite molecules with respect to the diopside-hedenbergite series.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deer, W.A., Howie, R.A. & Zussmann, J. (1978) Rock- Forming Minerals. 2nd edition, Vol. 2A Longman and, J. Wiley & Sons, London.Google Scholar
Dondi, M., Ercolani, G., Guarini, G., Marsigli, M. & Venturi, I. (1996) Evoluzione della microstrutmra durante la cottura rapida di impasti per piastrelle porose. Ceramurgia, 26, 301–314.Google Scholar
Echallier, J.-C. & Mery, S. (1992) L'évolution minéralogique et physico-chimique des pâtes calcaires au cours de la cuisson: experimentation en laboratoire et application archéologique. Doc. et Trav. IGAL, 16, 87120.Google Scholar
He, C. (1994) Application of Mössbauer spectroscopy to fired clay products. Silicates Industriels, 7–8, 247250.Google Scholar
Kirkpatrick, R.J. (1974) Kinetics of crystal growth in the system CaMgSi2O6-CaAl2SiO6 . Am. J. Sci. 274, 215242.CrossRefGoogle Scholar
Lach, W. (1978) Variazioni microstrutturali in piastrelle e sanitari durante ta cottura. Ceramurgia, 7, 63–73.Google Scholar
Minguzzi, V., Morandi, N., Nannetti, M.C., Pirani, R. & Poppi, L. (1976–77) Mineralogy and geochemistry of the contact minerals in the Predazzo-Monzoni area - Part II: The Predazzo fassaite and revision of the fassaite crystal–chemistry. Miner. Petrogr. Acta, 21, 189219.Google Scholar
Morimoto, N. (1988) IMA Subcommittee on pyroxenes, Nomenclature of pyroxenes. Mineral Mag. 52, 535550.Google Scholar
Peters, T. & Iberg, R. (1978) Mineralogical changes during firing of calcium-rich brick clays. Am. Ceram. Soe. Bull. 57, 503505, 509.Google Scholar
Potts, P.J. (1987) A Handbook of Silicate Rock Analysis. Blackie, Glasgow.Google Scholar
Prewitt, C.T. (ed.) (1980) Reviews in Mineralogy: 7. Pyroxenes. Mineralogical Society of America, Washington DC.Google Scholar
Shoval, S. (1988) Mineralogical changes upon heating calcitic and dolomitic marl rocks. Thermoehim. Acta, 135, 243252.Google Scholar