Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:45:14.807Z Has data issue: false hasContentIssue false

Alteration of imogolite by dry grinding

Published online by Cambridge University Press:  09 July 2018

Teruo Henmi
Affiliation:
Faculty of Agriculture, Ehime University, Matsuyama 790, Japan
Naganori Yoshinaga
Affiliation:
Faculty of Agriculture, Ehime University, Matsuyama 790, Japan

Abstract

The effects of dry grinding on the structure, morphology and properties of imogolite have been investigated by means of X-ray powder diffraction analysis, IR, DTA, and measurements of CEC and specific surface area. Imogolite is very susceptible to alteration by grinding compared to layer silicate minerals such as halloysite, kaolinite and montmorillonite. In the earlier stages of grinding, the parallel array of imogolite tubular structure units is markedly disturbed. On further grinding, disruption of Si-O-Al linkages, polymerization of the silica component released and loss of structural OH groups proceed simultaneously, these changes eventually resulting in complete breakdown of the structure. Ground imogolite is reaggregated finally into granular particles of irregular shape. All these changes are associated with a decrease in water holding capacity, CEC and specific surface area.

Résumé

Résumé

Les effets du broyage à sec sur la structure, la morphologie et les propriétés de l'imogolite ont été étudiés par diffraction des rayons X, IR, ATD., et la mesure de la CEC. et des surfaces spécifiques. L'imogolite est très sensible à l'altération par broyage, compareée aux minéraux phylliteux tels l'halloysite, la kaolinite et la montmorillonite. Dès le début du broyage l'empilement parallèle des unités structurales tubulaires de l'imogolite est détruit. En continuant le broyage, les liaisons Si-O-Al sont rompues, la silice passée en solution polymérise et la perte des groupes OH structuraux s'amplifie; ces changements peuvent conduire à l'effondrement complet de la structure. L'imogolite broyée est finalement reaggrégée en particules granulées de forme irrégulière. Tous ces changements sont associés avec une diminution de la capacité de rétention de l'eau, de la CEC. et de la surface spécifique.

Kurzreferat

Kurzreferat

Die Einflüsse trockenen Mahlens von Imogolit auf dessen Struktur, Morphologie und Eigenschaften wurden mittels Pulverdiffraktometrie, IR, DTA, sowie Messungen der Kationenaustauschkapazität und der spex. Oberfläche untersucht. Im Vergleich zu Schichtsilikaten wie Halloysit, Kaolinit und Montmorillonit reagiert Imogolit sehr empfindlich auf Veränderungen durch Mahlen. Zu Beginn wird die Parallelanordnung der Imogolitröhren-struktureinheiten deutlich zerstört. Bei weiterem Mahlen zeigte sich eine Sprengung der Si-O-Ai Bindungen, die Polymerisation des Silicatbestandteiles löste sich und ein struktureller OH-Gruppenverlust stellte sich gleichzeitig ein. Alles zusammen verursacht eventuell einen kompletten Strukturzusammenbruch. Gemahlener Imogolit ordnet sich letztlich wieder in unregelmäßig geformte Granulatpartikel an. Begleitet sind alle vorgänge mit einer Abnahme der Wasserhalte und Kationenaustauschkapazität, sowie der spez. Oberfläche.

Resumen

Resumen

Los efectos de la molienda en seco sobre la estructura morfológica y propiedades de la imogolita, han sido estudiadas por DR X, IR, ATD., medidas de capacidad de cambio y de superficie especifica. La imogolita es muy sensible a la alteración por molienda comparada con otros silicatos laminares tales como la haloisita, caolinita y montmorillonita. En las primera etapas de la molienda, el ordenamiento paralelo de las unidades tabulares de la estructura de la imogolita se ve fuertemente alterado. Moliendas posteriores dan lugar a la rotura de los enlaces Si-O-Al, la polimerización de la sílice liberada ya la desaparición de los grupos OH estructurales. En algunos casos estos cambios provocan la completa destrucción de la estructura. La imogolita molida se reagrupa finalmente en partículas granulares de forma irregular. Todos estos cambios van asociados a una disminución de la capacidad de retención de agua, de la capacidad de cambio y de la superficie especifica.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomine, S. & Higashi, T. (1955) Clay minerals of decomposed andesitic agglomeratic lava at Yoake. Miner. J. Japan 1, 278289.Google Scholar
Carter, D.L., Heilman, M.D. & Gonzalez, C.L. (1965) Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Sci. 100, 356-360.CrossRefGoogle Scholar
Cradwick, P.D.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K. & Yoshinaga, N. (1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nature Phys. Sci. 240, 187189.Google Scholar
Egashira, K. & Aomine, S. (1974) Effects of drying and heating on the surface area of allophane and imogolite. Clay Sci. 4, 231242.Google Scholar
Farmer, V.C., Fraser, A.R., Russell, J.D. & Yoshinaga, N. (1977) Recognition of imogolite structures in allophanic clays by infrared spectroscopy. Clay Miner. 12, 5557.Google Scholar
Grim, R.E. (1968) Clay Mineralogy, pp. 469471. McGraw-Hill Book Company, New York.Google Scholar
Henmi, T. (1980) Effect of SIO2/A12O3 ratio on the thermal reactions of allophane. Clays Clay Miner. 28, 9296.CrossRefGoogle Scholar
Henmi, T., Tanaka, S., Tange, K. & Yoshinaga, N. (1980) Physico-chemical properties of allophane in relation to its chemical composition.—Part 3. Effect of SIO2/Al2O3 ratio on the thermal transformation of allophane. Abst. 1980 Meeting, Soc. Sci. Soil Manure, Japan 26, 36.Google Scholar
Henmi, T. & Wada, K. (1976) Morphology and composition of allophane. Am. Miner. 61, 379390.Google Scholar
Jackson, M.L. (1969) Soil Chemical Analysis—Advanced Course. Published by the author, Dept of Soil Science, Univ. of Wisconsin, Madison, USA.Google Scholar
Klug, H.P. & Alexander, L.E. (1954) X-ray diffraction procedures for polycrystalline and amorphous materials, pp. 299302. John Wiley & Sons, New York.Google Scholar
Kohler, E., Hofmann, U., Scharrer, E. & Fruhauf, K. (1960) Über den Einflus der Mahlung auf Kaolin und Bentonit. Ber. Deut. Keram. Ges. 37, 493503.Google Scholar
Miyauchi, N. & Aomine, S. (1966) Mineralogy of gel-like substance in the pumice bed in Kanuma and Kitakami districts. Soil Sci. Plant Nutr. 12, 187190.CrossRefGoogle Scholar
Russell, J.D., McHardy, W. J. & Fraser, A.R. (1969) Imogolite: a unique aluminosilicate. Clay Miner. 8,8799.Google Scholar
Sudo, T. (1974) Nendokōbutsugaku (Clay Mineralogy), pp. 267284. Iwanami shoten, Tokyo.Google Scholar
Sudo, T. (1978) An outline of clays and clay minerals in Japan. Pp. 1103 in: Clays and Clay Minerals of Japan (Sudo, T. and Shimoda, S., editors). Kodansha Ltd., Tokyo; Elsevier, Amsterdam & New York.Google Scholar
Takahashi, H. (1959a) Effects of dry grinding on kaolin minerals. I. Kaolinite. Bull. Chem. Soc. Japan 32, 235245.Google Scholar
Takahashi, H. (1959b) Effects of dry grinding on kaolin minerals. II. Kibushi-clay. Bull. Chem. Soc. Japan 32, 245251.Google Scholar
Takahashi, H. (1959C) Effects of dry grinding on kaolin minerals. III. Halloysite. Bull. Chem. Soc. Japan 32, 252263.CrossRefGoogle Scholar
Wada, K (1977) Allophane and imogolite. Pp. 603638 in: Minerals in Soil Environments (Dixon, J.B. and Weed, S.B., editors). Soil Sci. Soc. Amer. Inc., Madison.Google Scholar
Wada, K & Harada, Y. (1969) Effect of salt concentration and cation species on the measured cation-exchange capacity of soils and clays. Proc. Int. Clay Conf. Tokyo 1, 561571.Google Scholar
Wada, K & Harward, M.E. (1974) Amorphous clay constituents of soils. Adv. Agron. 26, 211260.CrossRefGoogle Scholar
Wada, K & Henmi, T. (1972) Characterization of micropores of imogolite by measuring retention of quaternary ammonium chlorides and water. Clay Sci. 4, 127136.Google Scholar
Wada, K & Matsubara, I. (1968) Differential formation of allophane, ‘imogolite’ and gibbsite in the Kitakami pumice bed. Trans. 9th Int. Congr. Soil Sci. Adelaide. 3, 123131.Google Scholar
Wada, K & Yoshinaga, N. (1969) The structure of imogolite. Am. Miner. 54, 5071.Google Scholar
Wada, K, Yoshinaga, N., Yotsumoto, H., Ibe, K. & Aida, S. (1970) High resolution electron micrographs of imogolite. Clay Miner. 8, 487489.Google Scholar
Yoshinaga, N. (1968) Identification of imogolite in the filmy gel materials in the Imaichi and Shichihonzakura pumice beds. Soil Sci. Plant Nutr. 14, 238246.Google Scholar