Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T15:40:23.456Z Has data issue: false hasContentIssue false

Alteration of glassy volcanic rocks to Naand Ca-smectites in the Neogene basin of Manisa, western Anatolia, Turkey

Published online by Cambridge University Press:  09 July 2018

M. Çiflikli
Affiliation:
Niğde University, Faculty of Engineering, Dept. of Geological Engineering, 51245 Nigde, Turkey
E. Çiftçi*
Affiliation:
Istanbul Technical University, Faculty of Mines, Dept. of Geol. Engineering, 34469 Maslak-Istanbul, Turkey
H. Bayhan
Affiliation:
Hacettepe University, Faculty of Engineering, Dept. of Geol. Engineering, 06100 Ankara, Turkey
*

Abstract

Alkali- and Ca-rich smectites occur in association with Neogene lacustrine sedimentary rocks and high-K calc-alkaline volcanic rocks with compositions ranging from andesite to rhyolite in western Anatolia (Turkey). Major clay occurrences are associated predominantly with the Foça and Akçaköy ignimbrites and with the ignimbrites within the Rahmanlar pyroclastics. Experimental studies indicate that the main clay minerals present are Na- and Ca-smectite and subordinate illite, associated with silica polymorphs, trace clinoptilolite and chlorite. The authigenic minerals formed by weathering and metasomatic reactions between hot volcanic material and lake water. Smectite was produced as a result of argillic alteration of the volcanic glass and feldspars of the ignimbrites, Rahmanlar pyroclastics and reworked volcaniclastic sediments through chemical weathering and dissolution-precipitation processes and formed as authigenic phases both in terrestrial and nearby shallow lacustrine environments under prevalent humid or semi-humid climate during the Neogene.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Açıkalın, İ. & Bayraktar, S. (1986) Zeytindağ-Şakran-Foça civarı kaolen prospeksiyonu jeoloji raporu. M.T.A. Report, Ankara (unpublished).Google Scholar
Akartuna, M. (1962) On the geology of İzmir-Torbalı. M.T.A. Bulletin, 59, 11–19.Google Scholar
Akyürek, B. & Soysal, Y. (1978) Kırkağaç-Soma – (Manisa) – Savaştepe-Ayvalık (Balıkesir)-Bergama (İzmir) civarının jeolojisi. M.T.A. Report, 6432, Ankara.Google Scholar
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. & Mitchell, J.G. (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67–95.Google Scholar
Altaner, S.P. & Grim, R.E. (1990) Mineralogy, chemistry and diagenesis of tuffs in the Sucker Creek Formation (Miocene), Eastern Oregon. Clays and Clay Minerals, 38, 561–572.CrossRefGoogle Scholar
Arpat, E. & Bingöl, E. (1969), Ege bölgesi graben sisteminin gelişimi üzerine düşünceler. M.T.A. Dergisi, 73, 1–8.Google Scholar
Bain, D.C. & Smith, B.EL. (1987) Chemical analysis. Pp. 248–274 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Blackie, Glasgow.Google Scholar
Bingöl, E. (1976) Batı Anadolu’nun jeoteknik evrimi. M.T.A. Dergisi, 86, 14–35.Google Scholar
Bozkurt, E. (2003) Origin of NE-trending basins in western Turkey. Geodinamica Acta, 14, 61–81.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structure of Clay Minerals and their X-ray Identification. Mineralogical Society, Monograph 5, London.Google Scholar
Brinkmann, R. (1971) The geology of western Anatolia. Pp. 171–190 in: Geology and History of Turkey (A.S. Campbell, editor). Petrol. Expl. Soc. of Libya.Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society (Clay Minerals Group), London, 543 pp.Google Scholar
Celik, M., Karakaya, N. & Temel, A. (1999) Clay minerals in hydrothermally altered volcanic rocks, Eastern Pontides, Turkey. Clays and Clay Minerals, 47, 708–717.CrossRefGoogle Scholar
Chipera, S.J. & Apps, J.A. (2001) Geochemical stability of natural zeolites. Pp. 81–161 in: Natural Zeolites (D.L. Bish & D.W. Ming, editors). Reviews in Mineralogy, 45. Mineralogical Society of America, Washington, D.C., USA.Google Scholar
Christidis, G. (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays and Clay Minerals, 49, 204–215.Google Scholar
Christidis, G. (2008) Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43, 515–29.Google Scholar
Christidis, G. & Dunham, A.C. (1993) Compositional variations in smectites. Part I. Alteration of intermediate rocks. A case study from Milos Island, Greece. Clay Minerals, 28, 255–273.CrossRefGoogle Scholar
Christidis, G. & Dunham, A.C. (1997) Compositional variations in smectites. Part II. Alteration of acidic precursors. A case study from Milos Island, Greece. Clay Minerals, 32, 253–270.Google Scholar
Christidis, G., Scott, P.W. & Marcopoulos Th. (1995) Origin of the bentonite deposit of Eastern Milos, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43, 63–77.Google Scholar
Çiftçxi, E., Hogan, J. P., Kolaylı, H. & Çadırlı, E. (2008) Natrolitite, an unusual rock – occurrence, petrographic and geochemical characteristics (eastern Turkey). Clays and Clay Minerals, 56, 2, 194–208.Google Scholar
Çoban, F. & Ece, Ö.I. (1991) Başören (Kütahya) yöresindeki Ca-bentonit Yataklarının mineralojisi ve kristobalit oluşumunun incelenmesi. Çukurova Üniversitesi Ziraat Fakültesi M. Sayın Kil Mineralleri sempozyum Kitabı, 87–94, Adana.Google Scholar
Çoban, F. & Ece, Ö.I. (1999) Fe3+ rich montmorillonitebeidellite series in Ayvacık bentonite deposit, Biga Peninsula, northwest Turkey. Clays and Clay Minerals, 47, 165–173.Google Scholar
Demirhan, M. & Göktaş, F. (2002) Batı Anadolu seramik hammaddeleri arama ve değerlendirme raporu. M.T.A. Report, Ankara.Google Scholar
Dora, Ö. (1964) Geologisch-lagerstattenkuntliche untersuchungen im Yamanlar Gebirge. M.T.A. Yayını, 116, 68 pp.Google Scholar
Dönmez, M., Türkecan, A., Akçay, A.E., Hakyemez, Y. & Sevin, D. (1998) İzmir ve kuzeyinin jeolojisi, Tersiyer volkanizmasının petrografik ve kimyasal özellikleri: M.T.A. Report, 10181, Ankara.Google Scholar
Ejima, Y., Fujina, T., Takagi, H., Shimada, K., Iwanaga, T., Yoneda, Y. & Murokami, Y. (1987) The prefeasibility study on the Dikili – Bergama geothermal development project in the Republic of Tukey. Progress Report II (unpublished).Google Scholar
Ercan, T., Satır, M., Sevin, D. & Türkecan, A. (1997) Batı Anadolu’da Tersiyer ve Kuvaterner yaşlı volkanik kayaçlarda yeni yapılan radyometrik yaş ölçümlerinin yorumu. M.T.A. Dergi, 119, 103–112.Google Scholar
Erkoyun, H. & Kadir, S. (2011) Mineralogy, micromorphology, geochemistry and genesis of a hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaçlar area, Uşak, western Turkey. Clay Minerals, 46, 421–448.Google Scholar
Eşder, T., Yakabağ, A., Sarıkaya, H. & Çiçekli, K. (1991) Aliağa (İ zmir) yöresinin jeolojisi ve jeotermal enerji olanakları. M.T.A. Gen. Müd. Ege Böl. Müd. Report.Google Scholar
Faccenna, C., Jolivet, L., Piromelli, C. & Morallo, A. (2003) Subduction and the depth of convection in the Mediterranean mantle. Journal of Geophysical Research, 108, 2099, doi: 1029/ 2001JB001690.Google Scholar
Grim, R.E. & Güven, N. (1978) Bentonites: Geology, Mineralogy, Properties and Uses. Elsevier, Amsterdam, pp. 13–137.Google Scholar
Gündoğdu, M.N. (1982) Neojen Yaşlı Bigadiç Sedimanter Baseninin Jeolojik, Mineralojik ve Jeokimyasal İncelenmesi. PhD Thesis, Hacettepe Üniversitesi, 386 pp.Google Scholar
Gürel, A. & Kadir, S. (2006) Geology and mineralogy and origin of clay minerals of the Pliocene fluviallacustrine deposits in the Cappadocian Volcanic Province, Central Anatolia, Turkey. Clays and Clay Minerals, 54, 555–570.Google Scholar
Gürel, A. & Kadir, S. (2008) Geology and mineralogy of Late Miocene clayey sediments in the southeastern part of the Central Anatolian Volcanic Province, Turkey. Clays and Clay Minerals, 56, 3, 307–321.Google Scholar
Hay, R.L. (1977) Geology of zeolites in sedimentary rocks. Pp. 53–64 in: Mineralogy and Geology of Natural Zeolites (Mumpton, F.A., editor). Reviews in Mineralogy, 4, Mineralogical Society of America, Washington D.C., USA.Google Scholar
Jolivet L., (2001) A comparison of geodetic and nite strain pattern in the Aegean, geodynamic implications. Earth and Planetary Science Letters, 187, 95–104.Google Scholar
Kadir, S. (2007) Mineralogy, geochemistry and genesis of smectite in Pliocene volcaniclastic rocks of the Doğanbey Formation, Beyşehir basin, Konya, Turkey. Clays and Clay Minerals, 55, 402–422.CrossRefGoogle Scholar
Kadir, S. & Akbulut, A. (2009) Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Minerals, 44, 89–112.Google Scholar
Karakaya, M.Ç., Karakaya, N. & Küpeli, Ş. (2011a) Mineralogical and geochemical properties of the Naand Ca-bentonites of Ordu (N.E. Turkey). Clays and Clay Minerals, 59, 75–94.Google Scholar
Karakaya, M.Ç., Karakaya, N. & Bakır, S.(2011b) Some properties and potential applications of the Na- and Ca-bentonites of Ordu (N.E. Turkey). Applied Clay Science, 54, 159–165.Google Scholar
Kawamoto, T. (1992) Dusty and honeycomb plagioclase: indicators of processes in the Uchino stratified magma chamber, Izu Peninsula, Japan. Journal of Volcanology and Geothermal Research, 49, 191–208.CrossRefGoogle Scholar
Kaya, O. (1978) Ege kıyı kuşağı (Dikili-Zeytindağ-Yenifoça) Neojen stratigrafisi. Ege Üniv. Fen Fak. Monografiler serisi, 17.Google Scholar
Kaya, O. (1979) The stratigraphy and tectonics of the middle eastern Aegean Neogene (in Turkish, with English abstract). Bulletin of the Geological Society of Turkey, 22, 35–58. Ankara.Google Scholar
Konta, J. (1986) Textural variation and composition of bentonite derived from basaltic ash. Clay and Clay Minerals, 34, 257–265.Google Scholar
Kuritani, T. (1999) Phenocryst crystallization during ascent of alkali basalt magma at Rishiri Volcano, northern Japan. Journal of Volcanology and Geothermal Research, 88, 77–97.Google Scholar
Le Pichon, X. & Angelier, J. (1979) The Hellenic arc and trench system: a key to the evolution of the Eastern Mediterranean area. Tectonophysics, 60, 1–42.Google Scholar
Mistardis, G. (1976) Recherches sur I’evolution du relief dans le Centre-Ouest Egeen au Pliocene. Bulletin de la Société Géologique de France, 7, XVIII, 2, 217–223.Google Scholar
Öngür, T. (1972a) İzmir-Urla jeotermal araştırma sahasına ilişkin jeoloji raporu. M.T.A. Report, 4835, Ankara.Google Scholar
Öngür, T. (1972b) Dikili-Bergama jeotermal araştırma sahasına ilişkin jeoloji raporu. M.T.A. Report, 5444, Ankara.Google Scholar
Peccerillo, A. & Taylor, S.R. (1975) Geochemistry of Upper Cretaceous volcanic rocks from the Pontic Chain, Northern Turkey. Bulletin Volcanologique, 39, 1–13.Google Scholar
Peccerillo, A. & Taylor, S.R. (1976) Geochemistry of Eocene calc-alkaline rocks from the Kastamonu area, Northern Turkey. Contribution to Mineralogy and Petrology, 58, 63–81.Google Scholar
Phillipson, A. (1918) Kleinasien. Handbuch der Regionalen Geologie, 2/2, 312.Google Scholar
Purvis, M. & Robertson, A.H.F. (2004) A pulsed extension model for the Neogene-Recent E-W trending Alasehir Graben and the NE-SW-trending Selendi and Gordes Basins, western Turkey. Tectonophysics, 391, 171–201.Google Scholar
Savaşçın, Y. (1974) Batı Anadolu ‘andezit ‘ ve ‘bazalt’ jenez sorununa katkılar. T.İ.K., Bulletin, 17, 87–173.Google Scholar
Senkayi, A.L., Dixon, J.B., Hossner, L.R., Abder-Ruhman, M. & Fannag, D.S. (1984) Mineralogy and genetic relationship of tonstein, bentonite and lignitic strata in the Eocene Yegne formation of East-Central Texas. Clays and Clay Minerals, 32, 259–271.Google Scholar
Slaughter, M. & Early, J.W. (1965) Mineralogy and geological significance of the Mowry bentonites, Wyoming. Special GSA Papers, 83, 114 pp.Google Scholar
Shiraki, R., Sakai, H, Endoh, M. & Kishia, N. (1987) Experimental studies on rhyolite and andesite-seawater interactions at 300°C and 1000 bars. Geochemical Journal, 21, 139–148.Google Scholar
Temel, A. & Gündoğdu, N.M. (1996) Zeolite occurrances and erionite-mesothelioma relationship in Cappadocia, Central Anatolia, Turkey. Mineralium Deposita, 31, 539–547.Google Scholar
Türkecan, A., Akçay, A., Özgür, İ.B. & Ateş, M. (1992) 1/25.000 ölçekli jeoloji haritası, M.T.A. Genel Müdürlüğü (unpublished).Google Scholar
Van Hinsbergen, D.J.J., Hafkenschield, E., Spakman, W., Meulenkamp, J.E. & Wortel, R. (2005) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 33, 325–328.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales: Developments in Sedimentology, 44. Elsevier, Amsterdam, 819 pp.Google Scholar
Williams, L.A., Parks, G.A. & Crerar, D.A. (1985) Silica diagenesis, 1. Solubility controls. Journal of Sedimentary Petrology, 55, 301–311.Google Scholar
Winchester, J.A. & Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.Google Scholar
Wirsching, U., Ehn, R., Höller, H., Klammer, D & Sitte, W. (1990) Studies on hydrothermal alteration by acid solutions dominated by SO4 2-: Formation of the alteration of the Gleichenberg latitic rock (Styria, Austria) – Experimental evidence. Mineralogy and Petrology, 41, 81–103.Google Scholar
Yıldız, A. & Kuşçu, M. (2004) Origin of the Başören (Kütahya, W. Turkey) bentonite deposits. Clay Minerals, 39, 219–231.Google Scholar
Yıldız, A. & Kuşçu, M. (2006) Geochemical characteristics of Başören (Kütahya) bentonite deposits. Journal of Clay Science and Technology, 1, 27–41.Google Scholar
Ziegler, K. (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41, 355–393.CrossRefGoogle Scholar
Zielinski, R.A. (1982) The mobility of uranium and other elements during alteration of rhyolite ash to Montmorillonite: A case study in the Troublesome formation, Colorado, U.S.A. Chemical Geology, 35, 185–204.Google Scholar