Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T00:10:57.027Z Has data issue: false hasContentIssue false

Adsorption of humic acid onto a kaolinitic clay studied by high-resolution argon adsorption volumetry

Published online by Cambridge University Press:  09 July 2018

A. Saada*
Affiliation:
Bureau de Recherches Géologiques et Minières (BRGM), Environnement Procédés, 3, avenue Claude Guillemin, BP 6009, 45060 Orléans Cedex 2
H. Gaboriau
Affiliation:
Bureau de Recherches Géologiques et Minières (BRGM), Environnement Procédés, 3, avenue Claude Guillemin, BP 6009, 45060 Orléans Cedex 2
S. Cornu
Affiliation:
Unité de Science du sol, INRA d'Orléans, Avenue de la pomme de pin, BP 20619, 45166 Olivet Cedex
F. Bardot
Affiliation:
Bureau de Recherches Géologiques et Minières (BRGM), Environnement Procédés, 3, avenue Claude Guillemin, BP 6009, 45060 Orléans Cedex 2
F. Villiéras
Affiliation:
Laboratoire Environnement etMinéralurgie, UMR 7569 INPL & CNRS, ENSG - BP 40 - 54501 Vandoeuvre-les-Nancy Cedex
J . P. Croué
Affiliation:
Laboratoire de Chimie de l'Eau et de l'Environnement, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*

Abstract

The mechanisms governing the adsorption of a commercial humic acid (HA) on a kaolinitic clay were determined. The amount of HA fixed increased with the ionic strength of the medium and the presence of divalent ions (Ca2+). The effect of Ca2+ is due to its ability to establish (1) intramolecular bridges causing condensation of the HA, and (2) intermolecular bridges between the clay and the HA. A stable clay-humic complex containing only the fraction of HA that withstands washing with water was prepared and characterized by high-resolution Ar adsorption volumetry. The overall results show that (1) HA interacts strongly with the basal surfaces of the clay, (2) Ca serves to establish Ca2+ bridges between HA and clay, and (3) HA and clay interact via at least two distinct adsorption mechanisms.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardot, F., Villiéras, F., Michot, L.J., François, M., Gérard, G. & Cases, J.M. (1998) High resolution gas adsorption study on illites permuted with various cations: assessment of surface energetic properties. Journal of Dispersion Science and Technology, 19, 739760.Google Scholar
Caillère, S., Hénin, S. & Rautureau, M. (1982) Minéralogie des Argiles. Vol. 1: Structure et Propriétés Physico-chimiques. Masson, Paris.Google Scholar
Chen, Y., Senesi, N. & Schnitzer, M. (1977) Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41, 352358.Google Scholar
Chin, Y., Aiken, G.R. & O’Loughlin, E. (1994) Molecular weight, polydispersity, and spectroscopy properties of aquatic humic substances. Environmental Science and Technology, 28, 18531858.Google Scholar
Cornu, S., Saada, A., Breeze, D., Gauthier, S. & Baranger, P. (1999) Influence de composés organiques sur l’adsorption de l’arsenic par les kaolinites. Comptes Rendus de l’Académie des Sciences, Paris. 328, 649654.Google Scholar
Cornu, S., Breeze, D., Saada, A. & Baranger, P. (2003) The influence of pH, electrolyte type, and surface coating on arsenic (V) adsorption onto kaolinites. Soil Science of America Journal, 67, 11271132.CrossRefGoogle Scholar
Davis, J.A. (1982) Adsorption of natural dissolved organic matter at the oxide/water interfac e. Geochimica et Cosmochimica Acta, 46, 23812393.Google Scholar
Elfarissi, F. & Pefferkorn, E. (2000) Kaolinite/humic acid interaction in the presence of aluminium ion. Colloids and Surfaces A, 168, 112.Google Scholar
Gaboriau, H. & Saada, A. (2001) Influence of heavy organic pollutants of anthropic origin on PAH retention by kaolinite. Chemosphere, 44, 16331639.Google Scholar
Gaffney, J.S., Marley, N.A. & Clark, S.B. (1996) Humic and fulvic fcids and organic colloidal materials in the environment. American Chemi cal Societ y Symposium Series, 651, 1, 216.CrossRefGoogle Scholar
Gu, B., Schmitt, J., Chen, Z., Liang, L. & McCarthy, J.F. (1995) Adsorption and desorption of different organic matter f ract ions on iron oxides. Geochimica et Cosmochimica Acta, 59, 219 229.Google Scholar
Jardine, P.M., Weber, N.L. & McCarthy, J.F. (1989) Mechanisms of dissolved organic carbon adsorption on soil. Soil Science Society of America Journal, 53, 13781385.Google Scholar
Kördel, W., Dassenakis, M., Lintelmann, J. & Padberg, S. (1997) The importance of natural organic material for environmental processes in waters and soils. Pure and Applied Chemistry, 69, 15711600.Google Scholar
Kukkonen, J. (1992) Effect of lignin and chlorolignin in pulp mill effluents on the binding and bioavailability of hydrophobic organic pollutants. Water Research, 26, 15231532.CrossRefGoogle Scholar
Malcolm, R.L. & MacCarthy, P. (1986) Limitations in the use of commercial humic acids in water and soil research. Environmental Science and Technology, 20, 904 911.CrossRefGoogle ScholarPubMed
Michot, L., François, M. & Cases, J.M. (1990) Surface heterogeneity studied by quasi-equilibrium gas adsorption procedure. Langmuir, 6, 677681.Google Scholar
Moreau-Kervévan, C. & Mouvet, C. (1998) Adsorption and desorption of atrazine, deethylatrazine and hydroxyatrazine by soil components. Journal of Environmental Quality, 27, 4653.Google Scholar
Murphy, E.M., Zachara, J.M. & Smith, S.C. (1990) Influence of mineral bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science and Technology, 24, 15071516.Google Scholar
Murphy, E.M., Zachara, J.M., Smith, S.C. & Phillips, J.L. (1992) The sorption of humic acids to mineral surfaces and their role in contaminant binding. Science of the Total Environment, 117/118, 413 423.CrossRefGoogle Scholar
Murphy, E.M., Zachara, J.M., Smith, S.C., Phillips, J.L. & Wietsma, T.W. (1994) Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environmental Science and Technology, 28, 12911299.Google Scholar
Robert, M. & Tessier, D. (1974) Méthode de préparation des argiles des sols pour des études minéralogiques. Annales Agronomiques, 25, 859 882.Google Scholar
Saada, A., Breeze, D., Crouzet, C., Cornu, S. & Baranger, P. (2003) Adsorption of Arsenic(V) on kaolinite and on kaolinite-humic acid complexes. Role of humic acid nitrogen groups. Chemosphere, 51, 757763.CrossRefGoogle ScholarPubMed
Shen, Y.H. (1999) Sorption of natural dissolved organic matter on soil. Chemosphere, 38, 15051515.CrossRefGoogle Scholar
Siffert, B. & Kim, K.B. (1992) Study of the surface ionization of kaolinite in water by zetametry – Influence on the rheological properties of kaolinite suspension. Applied Clay Science, 6, 369382.Google Scholar
Sposito, G. (1989) The Chemistry of Soils. Oxford University Press, Oxford, UK.Google Scholar
Villiéras, F., Cases, J.M., François, M., Michot, L. & Thomas, F. (1992) Texture and surface energetic heterogeneity of solids from modelling of low pressure gas adsorption isotherms. Langmuir, 8, 17891795.Google Scholar
Villiéras, F., Michot, L.J., Cases, J.M., Berend, I., Bardot, F., François, M., Gérard, G. & Yvon, J. (1997) Static and dynamic studies of the energetic surface heterogeneity of clay minerals. Pp. 573 –623 in. Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces (Rudzinski, W., Steele, W.A. & Zgrablich, G., editors). Studies in Surface Science and Catalysis, 104. Elsevier Science Publishers B.V., Amsterdam.Google Scholar
Wershaw, R.L., Llaguno, E.C. & Leenheer, J.A. (1996) Mechanism of formation of humus coatings of mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on aluminia by solidstate 13C NMR. Colloids and Surfaces A, 108, 213223.Google Scholar