Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T21:13:25.119Z Has data issue: false hasContentIssue false

Adsorption of alcohols by smectites: III. Nature of the bonds

Published online by Cambridge University Press:  09 July 2018

F. Annabi-Bergaya
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, 1B, rue de la Férollerie, 45045 Orleans, France
M. I. Cruz
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, 1B, rue de la Férollerie, 45045 Orleans, France
L. Gatineau
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, 1B, rue de la Férollerie, 45045 Orleans, France
J. J. Fripiat
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, 1B, rue de la Férollerie, 45045 Orleans, France

Abstract

In previous papers of this series it was shown that it is possible to determine both the amount of methanol adsorbed in the interlamellar space of charge-deficient Ca-montmorillonite or of homoionic clays and the amount of methanol occluded in a system of micropores between clay particles. This paper deals with the distinction between methanol molecules in the cation coordination shell within the interlamellar space from those not directly influenced by the cation. An OH stretching band at about 3520 cm−1 or an OD stretching band in the 2600–2650 cm−1 region permits this distinction. At 35°C and at relative methanol vapour pressures between 0·1 and 0·9, one molecule of CH3OD is influenced directly by Na+, 2 molecules are influenced by Ba2+, 1·3–1·8 molecules by Li and 4 molecules by Ca2+. Thus, only 20–50% of the adsorbed alcohol molecules may be within the coordination shell of the cation in the interlamellar space.

Résumé

Résumé

Dans des articles précédents nous avons montré qu'il était possible d'évaluer la quantité de méthanol adsorbée dans l'espace interlamellaire d'une monmorillonite, et celle occluse dans les micropores formés par les particules de l'argile. Ces observations ont été faites sur des montmorillonites Ca de charge variable et sur des montmorillonites homoïoniques saturées par les cations Li+, Na+, Ba2+.

Nous montrons maintenant, grâce à l'interprétation quantitative des spectres IR, que dans l'espace interlamellaire une partie seulement des molécules adsorbées est en interaction directe avec le cation. Une bande de valence OH à 3520 cm−1 environ ou une bande de valence OD dans le domaine 2600–2650 cm−1 permet cette distinction.

Pour des pressions relatives de méthanol comprises entre 0·1 et 0·9, à 35°C, il y a une molécule d'alcool sous l'influence directe du cation pour une montmorillonite-Na+, deux molécules par cation pour une montmorillonite-Ba2+, de 1·3 à 1·8 molécules lorsque le cation est Li+ et quatre molécules pour Ca2+. Ces résultats montrent que seulement 20 à 50% de l'alcool adsorbé dans l'espace interlamellaire est sous l'influence directe du cation.

Kurzreferat

Kurzreferat

In vorausgegangenen Veröffentlichungen aus dieser Serie wurde gezeigt, daß es möglich ist, sowohl die Menge des in Zwischenschichten von Ca-Montmorilloniten mit Ladungsdefizit adsorbierten Methanols zu bestimmen, als auch den Anteil des Methanols, der in dem System von Mikroporen zwischen den Tonpartikeln enthalten ist. Diese Arbeit beschäftigt sich mit der Unterscheidung der Methanolmoleküle, die sich in der Kationenkoordinationsschale in Zwischenschichten befinden von denen, die nicht direkt von Kationen beeinflußt werden. Die OH-Streckschwingung bei 3520 cm−1 oder die OD-Streckschwingung im Bereich von 2600–2650 cm−1 erlaubt diese Unterscheidung. Bei 35°C und einem relativen Methanolgasdruck zwischen 0·1 und 0·9 wird ein Molekül CH3OD direkt von Na+, 2 Moleküle werden von Ba2+, 1·3 bis 1·8 Moleküle von Li und 4 Moleküle von Ca2+ beeinflußt. Wegen dieser Einflüsse befinden sich wahrscheinlich nur 20–50% der adsorbierten Alkoholmoleküle innerhalb der Koordinationsschale eines Kations in Zwischenschichten.

Resumen

Resumen

En trabajos anteriores de esta serie se ha mostrado que es posible determinar tanto la cantidad de metanol adsorbido en el espacio interlaminar de la montmorillonita-Ca deficiente de carga o de las arcillas homoiónicas, como la cantidad de metanol ocluído en un sistema de microporos entre les particulas de arcilla. Este artículo trate de la distinción entre las moléculas de metanol en la estructura de coordinación catiónica dentro del espacio interlaminar y las que no son influídas directamente por el catión. Una banda de estiramiento de OH en alrededor de 3520 cm−1 o una banda de estiramiento de OD en la región de 2600–2650 cm−1 permite esta distinción. A 35°C y con presiones relativas de los vapores de metanol entre 0·1 y 0·9, una molécula de CH3OD es influída directamente por Na+, 2 moléculas son influidas por Ba2+, 1·3–1·8 moléculas por Li y 4 moléculas por Ca2+. Así pues, sólo 20–50% de las moléculas del alcohol adsorbido pueden estar dentro de la estructura de coordinación del catión en el espacio interlaminar.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annabi-Bergaya, F., Cruz, M.I., Gatineau, L & Fripiat, J.J. (1979) Adsorption of alcohols by smectites: I. Distinction between internal and external surfaces. Clay Miner. 14, 249258.CrossRefGoogle Scholar
Annabi-Bergaya, F., Cruz, M.I., Gatineau, L & Fripiat, J.J. (1980) Adsorption of alcohols by smectites: II. Role of the exchangeable cations. Clay Miner. 15 (previous paper, this issue).CrossRefGoogle Scholar
Barnes, A.J. & Hallam, H.E. (1970) Infrared cryogenic studies: Part 4. Isotopically substituted methanols in Argon matrices. Trans. Farad. Soc. 66, 19201931.CrossRefGoogle Scholar
Bissade, K.K. & Johns, W.D. (1969) Montmorillonite-organic complexes—gas chromatographic Determinations of energies of interactions. Clays Clay Miner. 7, 197204.CrossRefGoogle Scholar
Bradley, W.F. (1945) Molecular associations between montmorillonites and some polyfunctional organic liquids. J. Am. Chem. Soc. 67, 975981.CrossRefGoogle Scholar
Brindley, G.W. & Ray, S (1964) Complexes of Ca-montmorillonite with primary monohydric alcohols. Am. Miner. 49, 106115.Google Scholar
Dowdy, R.H. (1966) Alcohol-water interactions on montmorillonite surfaces. PhD Thesis, Michigan State Univ.Google Scholar
Dowdy, R.H. & Mortland, M.M. (1968) Alcohol-water interactions on montmorillonite surfaces: II. Ethyleneglycol. Soil Sci. 105, 3643.CrossRefGoogle Scholar
Emerson, W.W. (1957) Organo-clay complexes. Nature 180, 4849.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1964) The infra-red spectra of layer silicates. Spectrochim. Acta. 20, 11491173.CrossRefGoogle Scholar
Glaeserr, . (1953) Complexes organo-argileux et róle Des cations échangeables. These Se. Phys. SèRie A 2601, n° 3473 Paris.Google Scholar
Gutierrez-Rios, E.R. & Rodriguez, A (1961) Complejos interlaminares De montmorillonita con acetona. Anales De la Real Sociedad Espanola De Fisica y Quimica LVII, 117130.Google Scholar
Gutierrez-Rios, E.R., Rodriguez, A & Galache, M.I. (1962) Complejos interlaminares De montmorillonita con sustancias organicas. Anales De la Real Sociedad Espanola De Fisica y Quimica. LVII, 5368.Google Scholar
Janoschek, (1976) Chapter 3 in: Recent Developments in Theory and Experiments. The Hydrogen Bond/I: Theory. (P. Schuster, G. ZunDel & C. Sandorly, editors). North Holland Publishing Company, Amsterdam.Google Scholar
Luch, (1976) Chapter 2 in: Recent Developments in Theory and Experiments. The Hydrogen Bond/II: Structure and Spectroscopy. (P. Schuster, G. ZunDel & C. Sandorly, editors). North Holland Publishing Company, Amsterdam.Google Scholar
Macewan, D.M.C. (1948) Complexes of clay with organic compounds: I. Complex formation between montmorillonite halloysite and certain organic liquids. Trans. Farad. Soc. 44, 349367.CrossRefGoogle Scholar
Noether, H.D. (1942) Infrared raman spectra of polyatomic molecules: XVII. Methyl-d3-alcohol-d and methyl-d3-alcohol. J. Chem. Phys. 10, 693699.CrossRefGoogle Scholar
Poinsignon, C, Cases, J.M. & Fripiat, J.J. (1978) Electrical polarization of water molecules adsorbed by smectites. An infrared study. J . Phys. Chem. 82, 18551860.CrossRefGoogle Scholar
Tarasevich, Y.I. & Ovcharenko, F.D. (1969) Infrared spectra of Deuterated methanol adsorbed on montmorillonite. Dokladi AkaDemii Nauk SSSR. 187, 372375.Google Scholar
Tarasevich, Y.I., Radul, N.M. & Ovcharenko, F.D. (1968) Infrared spectroscopic study of adsorption of n-propyl alcohol on montmorillonite. Kolloidnyl Zhurn. 30, 137143.Google Scholar
Van Thiel, M, Becker, E.D. & Pimentel, E.C. (1957) Infrared studies of hydrogen bonding of methanol by the matrix isolation technique. J. Chem. Phys. 17, 9599.CrossRefGoogle Scholar