Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T18:15:50.506Z Has data issue: false hasContentIssue false

XRD investigation of the intercalation of nacrite with cesium chloride

Published online by Cambridge University Press:  02 January 2018

S. Naamen*
Affiliation:
LPNHM-Faculté des Sciences de Bizerte, Université de Carthage, Tunisia
N. Jâafar
Affiliation:
LPNHM-Faculté des Sciences de Bizerte, Université de Carthage, Tunisia
H. Ben Rhaiem
Affiliation:
LPNHM-Faculté des Sciences de Bizerte, Université de Carthage, Tunisia
A. Ben Haj Amara
Affiliation:
LPNHM-Faculté des Sciences de Bizerte, Université de Carthage, Tunisia
A. Plançon
Affiliation:
UFR Science Université d’Orléans, Orléans, France
F. Muller
Affiliation:
ISTO, CNRS-Université Orleans, 1A rue de la Ferrollerie, 45071 Orléans, Cedex 2, France
*

Abstract

An homogenous intercalated compound of dioctahedral 1:1 clay mineral with cesium chloride was prepared by immersing an homogeneous 8.4 Å hydrated nacrite in a CsCl-saturated solution. The nacrite/CsCl complex obtained was studied using X-ray diffraction and thermogravimetric analysis (TGA). The best agreement between the observed and the simulated ρ(z) (R = 7%) was obtained with one Cl ion, one Cs+ ion and onewater molecule (per half-unit cell). The cation was located near the oxygen atom plane, while the anion was located near the hydroxyl groups of the adjacent layer. The number of the species intercalated in nacrite/CsCl was confirmed by TGA analysis. The best agreement between the calculated and the experimental hkl reflections, with h and/or k ≠ 0, corresponded to a stacking of 70% and 30% for T1 = −0.35a − 0.20b + 10.50n and T2 = +b/3 + 10.5n, respectively. These results indicate that the surface hydroxyls form hydrogen bonds with Cl ions. The Cs+ ions are situated near the ditrigonal cavities of the tetrahedral sheet and they interact with the surface oxygen atoms whereas the H2O molecules interact with the intercalated species.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ben Haj Amara, A. (1997a) X-ray diffraction, Infrared and TGA/DTG analysis of hydrated nacrite. Clay Minerals, 32, 463470.Google Scholar
Ben Haj Amara, A., Ben Brahim, J., Plançon, A., Ben Rhaiem, H. & Besson, G. (1997b) Étude structural d'une nacrite Tunisienne. Journal of Applied Crystallography, 30, 338344.Google Scholar
Ben Haj Amara, A., Ben Brahim, J., Besson, G. & Pons, C.H. (1995) Etude d'une nacrite intercalée par du dimethylsulfoxide et n-methylacetamide. Clay Minerals, 30, 295306.Google Scholar
Ben Haj Amara, A., Plançon, A., Ben Brahim, J. & Ben Rhaiem, H. (1998) XRD study of the stacking mode in natural and hydrated nacrite. Materials Science Forum, 278-281, 809813.Google Scholar
Ben Rhaîem, H., Tessier, D., Pons, C.H. & Ben Haj Amara, A. (1998) Evolution of the microstructure of inter-stratified Ca-saturated clays during dehydration: SAXS and HRTEM analysis. Clay Minerals, 33, 619628.Google Scholar
Ben Rhaîem, H., Tessier, D. & and Ben Haj Amara, A. (2000) Mineralogy of the <2 \nm fraction of three mixed-layer clays from southern and central Tunisia. Clay Minerals, 35, 375381.CrossRefGoogle Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science. Developments in Clay Science, 1. Elsevier, Amsterdam.Google Scholar
Brigatti, M.F., Galán, E. & Theng, B.K.G. (2006) Structures and mineralogy of clay minerals. Pp. 19–86: Handbook of Clay Science (F. Bergaya, B.K.G. Theng & G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
Cheng, H., Liu, Q., Yang, J., Du, X. & Frost, R.L. (2013) Influencing factors on kaolinite-potassium acetate intercalation complexes. Applied Clay Science, 50, 476180.Google Scholar
Detellier, C. & Letaief, S. (2006) Kaolinite-polymer nanocomposites. Pp. 707–719 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng & G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
Gardolinski, J.E.F.C. & Lagaly, G. (2005) Grafted organic derivatives of kaolinite: I. Synthesis, chemical and rheological characterization. Clay Minerals, 40, 537546.Google Scholar
Lapides, I., Lahav, N., Michaelian, K.H. & Yariv, S. (1997) X-ray study of the thermal intercalation of alkali halides into kaolinite. Journal of Thermal Analysis, 49, 14231432.Google Scholar
Lippmann, F. (1970) Function description preferred orientation in flat aggregates of flake-like clay minerals and in other axially symmetric fabrics. Contributions to Mineralogy and Petrology, 25, 7794.Google Scholar
Michaelian, K.H., Yariv, S. & Nasser, A. (1991a) Study of the interactions between cesium bromide and kaolinite by photoacoustic and diffuse reflectance infrared spectroscopy. Canadian Journal of Chemistry, 69, 749754.CrossRefGoogle Scholar
Michaelian, K.H., Friesen, W.I., Yariv, S. & Nasser, A. (1991b) Diffuse reflectance infrared spectra of kaolinite and kaolinite/alkali halide mixtures. Curve-fitting of the OH stretching region. Canadian Journal of Chemistry, 69, 17861790.Google Scholar
Michaelian, K.H., Lapides, I., Lahav, N., Yariv, S. & Brodsky, I. (1998) Infrared study of the intercalation of kaolinite by caesium bromide and caesium iodide. Journal of Colloid and Interface Science, 204, 389393.Google Scholar
Ming, H. (2004) Modification of kaolinite by controlled hydrothermal deuteration — a DRIFT spectroscopic study. Clay Minerals, 39, 349362.Google Scholar
Murray, H.H. (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.Google Scholar
Naamen, S., Jemai, S., Ben Rhaîem, H. & Ben Haj Amara, A. (2003) Study of the structural evolution of the 10 Å unstable hydrate of kaolinite during dehydration by XRD and SAXS. Journal of Applied Crystallography, 36, 898905.Google Scholar
Naamen, S., Ben Rhaiem, H. & Ben Haj Amara, A. (2004) XRD study of the nacrite/CsCl/H2O intercalation complexe. Materials Science Forum, 443444, 59–64.Google Scholar
Naamen, S., Ben Rhaîem, H., Karmous, M.S. & Ben Haj Amara, A. (2006) XRD study of the stacking mode of the nacrite/alkali halides complexes. Zeitschrift für Kristallographie Supplement, 23, 499504.Google Scholar
Plançon, A. (1981) Diffraction by layer structures containing different kinds of stacking faults. Journal of Applied Crystallography, 14, 300304.Google Scholar
Reynolds, R.C. (1986) The Lorentz-polarisation factor and preferred orientation in oriented clay aggregates. Clays and Clay Minerals, 34, 359367.Google Scholar
Taylor, R.M. & Norrish, K. (1966) The measurement of orientation distribution and its application to quantitative X-ray diffraction analysis. Clay Minerals, 6, 127141.CrossRefGoogle Scholar
Yariv, S. (1975) Infrared study of grinding kaolinite with alkali metal chlorides. Powder Technology, 12, 131138.Google Scholar
Yariv, S. (1986) Interactions of minerals of the kaolin group with cesium chloride and deuteration of the complexes. International Journal of Tropical Agriculture, 5, 310322.Google Scholar
Yariv, S., Nasser, A., Michaelian, K.H., Lapides, I., Deutsch, Y. & Lahav, N. (1994) Thermal treatment of the kaolinite/CsCl/H2O intercalation complex. Thermochimica Acta, 234, 275285.Google Scholar
Yariv, S., Lapides, I., Michaelian, K.H. & Lahav, N. (1999) Thermal intercalation of alkali halides into kaolinite. Journal of Thermal Analysis and Calorimetry, 56, 865884.Google Scholar
Yariv, S., Lapides, I., Nasser, A., Lahav, N., Brodsky, I. & Michaelian, K.H. (2000) Infrared study of the intercalation of potassium halides in kaolinite. Clays and Clay Minerals, 48, 1018.Google Scholar
Weiss, A., Thielepape, W. & Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen. Pp. 277–293 in: Proceedings of the International Clay Conference (T. Rosenquist & P. Graff-Pettersen, editors). Volume 1, Jerusalem.Google Scholar
Zheng, H. & Bailey, S.W. (1994) Refinement of the nacrite structure. Clays and Clay Minerals, 42, 4652.Google Scholar