Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:57:26.808Z Has data issue: false hasContentIssue false

Weathering in a marine clay during postglacial time

Published online by Cambridge University Press:  09 July 2018

K. Pederstad
Affiliation:
Norsk Hydro A/S, Kjørbokollen, N-1301 Sandvika
P. Jørgensen
Affiliation:
Department of Geology, Norwegian Agricultural University, Box 21, N-1432, Aas-NLH, Norway

Abstract

Marine clays of SE Norway lifted above sea-level have been subjected to weathering for 8500 years. As a result of this weathering a major part of the quartz, K-feldspar and plagioclase disappeared in the 0·2–0·6 µm fraction. Trioctahedral illite passed through the sequence: illite → mixed-layer illite-vermiculite → vermiculite → dissolution. This transformation started at a depth of 3 m, and the 2:1 layers dissolved in the upper part of the profile. Chlorite was broken down by weathering into finer particles. As a result, chlorite was first removed from the coarser fractions. Dioctahedral illite in the clay fractions passed through the following transformations in the upper part of the profile: illite → mixed-layer illite-vermiculite → vermiculite → chloritized vermiculite. Weathering models for the size fractions 0·2–0·6 and 0·2–2 µm showed that total amounts of dissolved material from these fractions in the upper part of the profile could be calculated as 55 and 38%, respectively. Dioctahedral 2:1 layers were most resistant to weathering, resulting in 75% dioctahedral phyllosilicates in the 0·2–0·6 µm fraction in the uppermost part of the profile, in contrast to 30% dioctahedral illite in the unweathered sample. This study illustrates the importance of investigating different fractions and not only material finer than 2 µm.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augedal, H.O. (1978) Teksturell mineralogisk og kjemisk sammensetning av kvartære marine leirer fra Sør-Norge. Cand. real. thesis., Dept. of Geology, University of Oslo.Google Scholar
Bain, D.C. (1977a) The weathering of ferruginous chlorite in a podzol from Argyllshire, Scotland. Geoderma 17, 193208.CrossRefGoogle Scholar
Bain, D.C. (1977b) The weathering of chloritic minerals in some Scottish soils. Soil Sci. 28, 144164.Google Scholar
Bain, D.C. & Duthie, D.M.L. (1985) The effect of weathering in the silt fractions on the apparent stability of chlorite in Scottish soil clay. Geoderma 34, 221227.Google Scholar
Berry, R.W. & Jørgensen, P. (1971) Grain size, mineralogy and chemistry of a quick-clay sample from the Ullensaker slide, Norway. Eng. Geol. 5, 7384.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in Atlantic Ocean and adjacent seas. Geol. Soc. Am. Bull. 76, 803832.CrossRefGoogle Scholar
Bradley, W.F. (1953) Analysis of mixed-layer clay mineral structures. Anal. Chem. 26, 727730.Google Scholar
Brown, G. (1961) X-ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society, London.Google Scholar
Busenberg, E. & Clemency, C. (1976) The dissolution kinetics of feldspars at 25°C and 1 atm. CO2 partial pressure. Geochim. Cosmochim. Acta 40, 4149.Google Scholar
DeMumbrum, L.E. (1963) Conversion of mica to vermiculite by potassium removal. Soil Sci. 96, 275276.Google Scholar
Gjems, O. (1967) Studies on clay minerals and clay-mineral formation in soil profiles in Scandinavia. Medd. Det Norske Skogf. Ves. 21, 303415.Google Scholar
Harward, M.E., Carstea, D.D. & Sayegh, A.H. (1969) Properties of vermiculites and smectites: expansion and collapse. Clays Clay Miner. 16, 437447.CrossRefGoogle Scholar
Johns, W.D., Grim, R.E. & Bradley, W.F. (1954) Quantitative estimations of clay minerals by diffraction methods. J. Sedim. Petrol. 24, 242251.Google Scholar
Jørgensen, P. (1965) Mineralogical composition and weathering of some Pleistocene marine clays from the Kongsvinger area, Southern Norway. Geol. Foren. Stock. Førh. 87, 6283.Google Scholar
Jørgensen, P. & Sørensen, P. (1979) Late Glacial and Holocene deglaciation and sedimentation in Làgendalen, southeastern Norway. Norsk Geol. Tidsskr. 59, 337343.Google Scholar
Kapoor, B.S. (1972) Weathering of micaceous clays in some Norwegian podzols. Clay Miner. 9, 383393.Google Scholar
Kodama, H. & Brydon, J.E. (1968) A study of clay minerals in podzol soils in New Brunswick, eastern Canada. Clay Miner. 7, 295309.Google Scholar
Konta, J., Borovec, Z., Sramek, J. & Tolar, V.L. (1970) Changes of primary biotite and muscovite during kaolinization of granites, Carlsbad Area, Czechoslovakia. Proc. 5th Conf. Clay Min. and Petrol. Praha, 2743.Google Scholar
Lagache, M. (1976) New data on the kinetics of alkali feldspars at 200°C in CO2 charged water. Geochim. Cosmochim. Acta 40, 157161.CrossRefGoogle Scholar
Lien, K. (1973) Mineralogisk og geokjemisk bestemmelse av silt i kvartære sedimenter i Numedalsldågens nedslagsfelt. Cand. real. thesis, Dept. of Geology, University of Oslo.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Moum, J. & Rosenqvist, I.Th. (1955) Kjemisk bergartsforvitring belyst red en del leirprofiler. Norges Geotekn. Inst. Publ. 8. Google Scholar
Moum, J. & Rosenqvist, I.Th. (1957) On the weathering of young marine clay. Proc. 4th Int. Conf. Soil Mechanics and Foundation Engineering, 7779. Butterworths Scientific Publications, London.Google Scholar
Pederstad, K. (1978) En kvartærgeologisk kartlegging i Sandefjordområdet med hovedvekt på en undersøkelse av forvitring på de marine leirene. Cand. real. thesis, Dept. of Geology, University of Oslo.Google Scholar
Roaldset, E. (1972) Mineralogy and geochemistry of Quaternary clays in the Numedal area, southern Norway. Norsk Geol. Tiddskr 52, 335369.Google Scholar
Rosenqvist, I.Th. (1955a) Investigations in the clay-electrolyte-water-system. Norges Geotekn. Inst. Publ. 9,Google Scholar
Rosenqvist, I.Th. (1955b) Bidrag til østlandsleirenes petrografi. Norsk Geol. Tidsskr. 35, 106116.Google Scholar
Rueslåtten, H.G. (1976) En kvartcergeologisk kartlegging av Dagaliområdet med en mineralogisk undersøkelse av podzolforvitring i moreneavsetningene. Cand. real. thesis, Dept. of Geology, University of Oslo.Google Scholar
Rueslåtten, H.G. & Jørgensen, P. (1977) Mineralogical composition and changes due to podzol weathering in tills from southern Norway. Proc. 2nd Int. Syrup. on Water-Rock Interaction, 184194. CNRS, Strasbourg.Google Scholar
Sippola, J. (1974) Mineral composition and its relation to texture and to some chemical properties in Finnish subsoils. Annales Agriculturae Fenniae 13, 169234.Google Scholar
Soveri, U. (1956) The mineralogical composition of argillaceous sediments of Finland. Annales Academie Scientiarum Fenniae, Series A. III. Geologica-Geographica 48, 132.Google Scholar
Sørensen, R. (1970) Rømundfjell En undersøkelse av berggrunn, kvartærgeologi, jordsmonn og jords monndannende faktorer. Cand. real. thesis, Dept. of Geology, University of Oslo.Google Scholar
Trøger, W.E. (1969) Optische Beslimmung der gesteinbildenden Minerale. Teil 2. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Weaver, C.E. (1958) Geologic interpretation of argillaceous sediments, Part I. Origin and significance of clay minerals in sedimentary rocks. Bull. Am. Ass. Petrol. Geol. 42, 254271.Google Scholar
Wiklander, L. & Aleksandrovic, D, (1969) Mineral analysis of Swedish soils. Lantbrukshogskolans Annaler 35, 895919.Google Scholar